Project description:Using metagenomics analysis, we are the first to identify the presence of a small, circular, single-stranded Gemykibivirus (GkV) genome from the respiratory tract of an elderly woman with severe acute respiratory distress syndrome. Our results suggest that further studies on whether GkVs infect humans and cause respiratory disease are needed.
Project description:The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30-40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.
Project description:Acute respiratory distress syndrome (ARDS) is an acute respiratory illness characterised by bilateral chest radiographical opacities with severe hypoxaemia due to non-cardiogenic pulmonary oedema. The COVID-19 pandemic has caused an increase in ARDS and highlighted challenges associated with this syndrome, including its unacceptably high mortality and the lack of effective pharmacotherapy. In this Seminar, we summarise current knowledge regarding ARDS epidemiology and risk factors, differential diagnosis, and evidence-based clinical management of both mechanical ventilation and supportive care, and discuss areas of controversy and ongoing research. Although the Seminar focuses on ARDS due to any cause, we also consider commonalities and distinctions of COVID-19-associated ARDS compared with ARDS from other causes.
Project description:Bronchoalveolar Lavage Fluid protein profile was characterized in ARDS subjects. Patients were divided into three groups: 1) Early phase survivors 2) Early phase non-survivors and 3) Late phase survivors. Bronchoalveolar lavage fluid was pooled within each group for sample preparation and mass spectrometry
Project description:Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. The objective of this study is to understand the differences in disease biology between survivors and non-survivors by characterizing BALF protein expression profiles in individual ARDS subjects.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. Total RNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 5 control, 7 ARDS. One replicate per array.
Project description:Rat model of ARDS was induced by saline lavage and mechanical ventilation. miRNA from rat lungs were used for dual color DNA microarray hybridization with 3DNA 50 kit version 2. Two-condition experiment, CON vs. ARDS lung tissues. replicates: 6 control, 6 ARDS. One replicate per array.