Project description:XMEN disease (X-linked immunodeficiency with Magnesium defect, Epstein-Barr virus infection and Neoplasia) is a novel primary immune deficiency caused by mutations in MAGT1 and characterised by chronic infection with Epstein-Barr virus (EBV), EBV-driven lymphoma, CD4 T-cell lymphopenia, and dysgammaglobulinemia [1]. Functional studies have demonstrated roles for magnesium as a second messenger in T-cell receptor signalling [1], and for NKG2D expression and consequently NK- and CD8 T-cell cytotoxicity [2]. 7 patients have been described in the literature; the oldest died at 45 years and was diagnosed posthumously [1-3]. We present the case of a 58-year-old Caucasian gentleman with a novel mutation in MAGT1 with the aim of adding to the phenotype of this newly described disease by detailing his clinical course over more than 20 years.
Project description:Direct acting antivirals and monoclonal antibodies reduce morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection. Persons at higher risk for disease progression and hospitalized patients with coronavirus disease-2019 (COVID-19) benefit most from available therapies. Following an emphasis on inpatient treatment of COVID-19 during the early pandemic, several therapeutic options were developed for outpatients with COVID-19. Additional clinical trials and real-world studies are needed to keep pace with the evolving pandemic.
Project description:A 64-year-old man presented with several weeks of intermittent irregular palpitations. He had no prior history of cardiac disease, hypertension or syncope. A 12-lead ECG revealed sinus rhythm with premature atrial and ventricular contractions and high QRS voltages consistent with LV-hypertrophy. Cardiac MR revealed asymmetrical septal hypertrophy and marked mid-myocardial hyperenhancement of the interventricular septum.
Project description:Objectives: To develop and validate a radiomics model for distinguishing coronavirus disease 2019 (COVID-19) pneumonia from influenza virus pneumonia. Materials and Methods: A radiomics model was developed on the basis of 56 patients with COVID-19 pneumonia and 90 patients with influenza virus pneumonia in this retrospective study. Radiomics features were extracted from CT images. The radiomics features were reduced by the Max-Relevance and Min-Redundancy algorithm and the least absolute shrinkage and selection operator method. The radiomics model was built using the multivariate backward stepwise logistic regression. A nomogram of the radiomics model was established, and the decision curve showed the clinical usefulness of the radiomics nomogram. Results: The radiomics features, consisting of nine selected features, were significantly different between COVID-19 pneumonia and influenza virus pneumonia in both training and validation data sets. The receiver operator characteristic curve of the radiomics model showed good discrimination in the training sample [area under the receiver operating characteristic curve (AUC), 0.909; 95% confidence interval (CI), 0.859-0.958] and in the validation sample (AUC, 0.911; 95% CI, 0.753-1.000). The nomogram was established and had good calibration. Decision curve analysis showed that the radiomics nomogram was clinically useful. Conclusions: The radiomics model has good performance for distinguishing COVID-19 pneumonia from influenza virus pneumonia and may aid in the diagnosis of COVID-19 pneumonia.
Project description:All giant Kawasaki aneurysms may not regress fully; some may eventually calcify, undergo thrombosis, and get detected in asymptomatic adults at later age. Tomisaku Kawasaki initially described this illness as mucocutaneous lymph node syndrome in childhood in 1967 and coronary arteritis was recognized later. We present a 58-year-old male, possibly one of the oldest surviving patients with giant coronary aneurysms who presented with large secundum atrial septal defect (ASD) with heart failure. This indicates that the disease was perhaps prevalent outside Japan even before the first Kawasaki's description.
Project description:BackgroundMany patients with severe coronavirus disease 2019 pneumonia exhibit signs of microthrombosis. Previous studies discussed intravenous fibrinolytic agents as potential add-on therapy in these patients. Therefore, we propose the inhalative administration of fibrinolytics as a possible safer alternative.Case presentationThis case series describes five white male patients, aged 51-78 years, treated with off-label inhalation of alteplase between November and December 2020. All patients suffered from severe severe acute respiratory syndrome coronavirus 2 infection with respiratory failure. Pulmonary embolism was ruled out by pulmonary angiogram in computed tomography scans, and all patients showed signs of coronavirus disease 2019 pneumonia. Four patients improved clinically, while one patient with advanced chronic diseases died due to multiple organ failure. No directly associated adverse effects were observed following inhalation of alteplase.ConclusionThis case series warrants further attention to investigate inhalative alteplase as an additional treatment in patients with severe coronavirus disease 2019 infection.
Project description:Purpose of reviewThe first studies on COVID-19 patients with acute respiratory distress syndrome (ARDS) described a high rate of secondary bacterial ventilator-associated pneumonia (VAP). The specificity of VAP diagnoses in these patients are reviewed, including their actual rate.Recent findingsPublished studies described high rates of bacterial VAP among COVID-19 patients with ARDS, and these VAP episodes are usually severe and of specifically poor prognosis with high mortality. Indeed, Severe acute respiratory syndrome - coronavirus disease 19 (SARS-CoV2) infection elicits alterations that may explain a high risk of VAP. In addition, breaches in the aseptic management of patients might have occurred when the burden of care was heavy. In addition, VAP in these patients is more frequently suspected, and more often investigated with diagnostic tools based on molecular techniques.SummaryVAP is frequented and of particularly poor prognosis in COVID-19 patients with ARDS. It can be explained by SARS-CoV-2 pathophysiology, and also breaches in the aseptic procedures. In addition, tools based on molecular techniques allow an early diagnosis and unmask VAP usually underdiagnosed by traditional culture-based methods. The impact of molecular technique-based diagnostics in improving antibacterial therapy and COVID-19 prognosis remain to be evaluated.