Project description:ObjectivesIn this study, we aimed to study the rate of autoantibodies against type I interferons (IFNs) in patients with COVID-19 and analyze its dependence on severity of infection and some other variables.MethodsA systemic review with the search terms: "COVID-19" or "SARS-CoV-2" and "autoantibodies" or "autoantibody" and "IFN" or "interferon" for the period 20 December 2019 to 15 August 2022 was carried out using PubMed, Embase, Cochrane, and Web of Science. R 4.2.1 software was used for meta-analysis of the published results. Pooled risk ratios and 95% confidence intervals (CIs) were calculated.ResultsWe identified eight studies involving 7729 patients, of whom 5097 (66%) had severe COVID-19 and 2632 (34%) had mild or moderate symptoms. The positive rate of anti-type-I-IFN-autoantibodies in the total dataset was 5% (95% CI, 3-8%), but reached 10% (95% CI, 7-14%) in those with severe infection. The most common subtypes were anti-IFN-α (89%) and anti-IFN-ω (77%). The overall prevalence in male patients was 5% (95% CI, 4-6%), and in female patients 2% (95% CI, 1-3%).ConclusionSevere COVID-19 is associated with high rates of autoantibodies against type-I-IFN and more so in male than female patients.
Project description:PurposeTo report four cases of life-threatening COVID-19 pneumonia in patients with high blood concentrations of neutralizing autoantibodies against type I interferons (IFNs), who were treated with plasma exchange (PE) as a rescue therapy.MethodsProspective case series, which included patients, diagnosed with RT-PCR-confirmed SARS-CoV-2 infection and positive autoantibodies against type I IFNs in two French intensive care units (ICUs) between October 8 and November 14, 2020. Six critically ill COVID-19 patients with no anti-IFN antibodies were used as controls. Anti-IFN autoantibodies and IFN concentrations, together with the levels of anti-SARS-CoV-2 antibodies, were measured sequentially in serum. Viral load was determined in the upper and lower respiratory tract. Patients were followed during hospital stay.ResultsThree men and one woman were included. Three of the patients had four PE sessions each, while another had three PE sessions. PE decreased the concentrations of autoantibodies against type I IFN in all four patients, whereas anti-SARS-CoV-2 antibody levels remained stable. Autoantibodies against type I IFN levels were high in tracheal aspirates of one patient and decreased after three PE sessions. By contrast, anti-IFN autoantibodies were not detected in tracheal aspirates from five control patients without detectable anti-IFN autoantibodies in serum. During PE, serum IFN-α levels slightly increased in three out of four patients, and upper respiratory tract viral load decreased in all patients. All patients were alive at day 28 of ICU admission. Two patients eventually died in the ICU, while the two survivors were discharged from the ICU at days 50 and 66.ConclusionsPE efficiently removes autoantibodies against type I IFNs, including those detected in tracheal aspirates, without affecting anti-SARS-CoV-2 antibody levels, in patients with life-threatening COVID-19 pneumonia. The clinical benefit of PE in patients with autoantibodies against type I IFNs should be tested in a larger study.
Project description:Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.
Project description:Type 1 interferons have a broad antiviral activity in vitro and are currently evaluated in a clinical trial to treat MERS-CoV. In this review, we discuss preliminary data concerning the potential activity of type 1 interferons on SARS-CoV-2, and the relevance of evaluating these molecules in clinical trials for the treatment of COVID-19.
Project description:Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in the Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in the medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in the plasma (diluted 1/10) of 7.9% (11 of 139) of the patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality, as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of type I IFN immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Project description:Recent studies reported the presence of pre-existing autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) in at least 15% of patients with critical or severe COVID-19 pneumonia. In one study, these auto-Abs were found in almost 20% of deceased patients across all ages. We aimed to assess the prevalence and clinical impact of the auto-Abs to type I IFNs in Seine-Saint-Denis district, which was one of the most affected areas by COVID-19 in France during the first wave. We tested for the presence of auto-Abs neutralizing type I IFNs in a cohort of patients admitted for critical COVID-19 pneumonia during the first wave in the spring of 2020 in medicine departments at Robert Ballanger Hospital, Aulnay sous Bois. We found circulating auto-Abs that neutralized 100 pg/mL IFN-α2 and/or IFN-ω in plasma 1/10 in 7.9% (11 of 139) of patients hospitalized for critical COVID-19. The presence of neutralizing auto-Abs was associated with an increased risk of mortality as these auto-Abs were detected in 21% of patients who died from COVID-19 pneumonia. Deceased patients with and without auto-Abs did not present overt clinical differences. These results confirm both the importance of IFN-I immunity in host defense against SARS-CoV-2 infection and the usefulness of detection of auto-Abs neutralizing type I IFNs in the management of patients.
Project description:Among the many activities attributed to the type I interferon (IFN) multigene family, their roles as mediators of the antiviral immune response have emerged as important components of the host response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Viruses likewise have evolved multiple immune evasion strategies to circumvent the host immune response and promote virus propagation and dissemination. Therefore, a thorough characterization of host-virus interactions is essential to understand SARS-CoV-2 pathogenesis. Here, we summarize the virus-mediated evasion of the IFN responses and the viral functions involved, the genetic basis of IFN production in SARS-CoV-2 infection and the progress of clinical trials designed to utilize type I IFN as a potential therapeutic tool.
Project description:Coronavirus disease 2019 (COVID-19) first emerged in late 2019 in China. At the time of writing, its causative agent SARS-CoV-2 has spread worldwide infecting over 9 million individuals and causing more than 460,000 deaths. In the absence of vaccines, we are facing the dramatic challenge of controlling COVID-19 pandemic. Among currently available drugs, type I Interferons (IFN-I) - mainly IFN-α and β -represent ideal candidates given their direct and immune-mediated antiviral effects and the long record of clinical use. However, the best modalities of using these cytokines in SARS-CoV-2 infected patients is a matter of debate. Here, we discuss how we can exploit the current knowledge on IFN-I system to tailor the most promising dosing, timing and route of administration of IFN-I to the disease stage, with the final aim of making these cytokines a valuable therapeutic strategy in today's fight against COVID-19 pandemic.
Project description:Autoantibodies against IFN-α and IFN-ω (type I IFNs) were recently reported as causative for severe COVID-19 in the general population. Autoantibodies against IFN-α and IFN-ω are present in almost all patients with autoimmune polyendocrine syndrome type 1 (APS-1) caused by biallelic deleterious or heterozygous dominant mutations in AIRE. We therefore hypothesized that autoantibodies against type I IFNs also predispose patients with APS-1 to severe COVID-19. We prospectively studied 6 patients with APS-1 between April 1, 2020 and April 1, 2021. Biobanked pre-COVID-19 sera of APS-1 subjects were tested for neutralizing autoantibodies against IFN-α and IFN-ω. The ability of the patients' sera to block recombinant human IFN-α and IFN-ω was assessed by assays quantifying phosphorylation of signal transducer and activator of transcription 1 (STAT1) as well as infection-based IFN-neutralization assays. We describe 4 patients with APS-1 and preexisting high titers of neutralizing autoantibodies against IFN-α and IFN-ω who contracted SARS-CoV-2, yet developed only mild symptoms of COVID-19. None of the patients developed dyspnea, oxygen requirement, or high temperature. All infected patients with APS-1 were females and younger than 26 years of age. Clinical penetrance of neutralizing autoantibodies against type I IFNs for severe COVID-19 is not complete.