Novel Red Light-Absorbing Organic Dyes Based on Indolo[3,2-b]carbazole as the Donor Applied in Co-Sensitizer-Free Dye-Sensitized Solar Cells.
Ontology highlight
ABSTRACT: Three novel organic dyes (D6, D7 and D8), based on indolo[3,2-b]carbazole as the donor and different types of electron-withdrawing groups as the acceptors, were synthesized and successfully applied in dye-sensitized solar cells (DSSCs). Their molecular structures were fully characterized by 1H NMR, 13C NMR and mass spectroscopy. The density functional theory (DFT) calculations, electrochemical impedance spectroscopy analysis, UV-Vis absorption characterization and tests of the solar cells were used to investigate the photophysical/electrochemical properties as well as DSSCs' performances based on the dyes. Dye D8 showed the broadest light-response range (300-770 nm) in the incident monochromatic photo-to-electron conversion efficiency (IPCE) curve, due to its narrow bandgap (1.95 eV). However, dye D6 exhibited the best device performance among the three dyes, with power conversion efficiency of 5.41%, Jsc of 12.55 mA cm-2, Voc of 745 mV and fill factor (FF) of 0.59. We also found that dye aggregation was efficiently suppressed by the introduction of alkylated indolo[3,2-b]carbazole, and, hence, better power conversion efficiencies were observed for all the three dyes, compared to the devices of co-sensitization with chenodeoxycholic acid (CDCA). It was unnecessary to add adsorbents to suppress the dye aggregation.
SUBMITTER: Xiao Z
PROVIDER: S-EPMC8037655 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA