Critical signaling pathways governing hepatocellular carcinoma behavior; small molecule-based approaches.
Ontology highlight
ABSTRACT: Hepatocellular carcinoma (HCC) is the second leading cause of death due to cancer. Although there are different treatment options, these strategies are not efficient in terms of restricting the tumor cell's proliferation and metastasis. The liver tumor microenvironment contains the non-parenchymal cells with supportive or inhibitory effects on the cancerous phenotype of HCC. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of liver carcinoma cells. Recent studies have established new approaches for the prevention and treatment of HCC using small molecules. Small molecules are compounds with a low molecular weight that usually inhibit the specific targets in signal transduction pathways. These components can induce cell cycle arrest, apoptosis, block metastasis, and tumor growth. Devising strategies for simultaneously targeting HCC and the non-parenchymal population of the tumor could lead to more relevant research outcomes. These strategies may open new avenues for the treatment of HCC with minimal cytotoxic effects on healthy cells. This study provides the latest findings on critical signaling pathways governing HCC behavior and using small molecules in the control of HCC both in vitro and in vivo models.
SUBMITTER: Farzaneh Z
PROVIDER: S-EPMC8045321 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA