Ontology highlight
ABSTRACT:
SUBMITTER: Wulczyn E
PROVIDER: S-EPMC8055695 | biostudies-literature | 2021 Apr
REPOSITORIES: biostudies-literature
Wulczyn Ellery E Steiner David F DF Moran Melissa M Plass Markus M Reihs Robert R Tan Fraser F Flament-Auvigne Isabelle I Brown Trissia T Regitnig Peter P Chen Po-Hsuan Cameron PC Hegde Narayan N Sadhwani Apaar A MacDonald Robert R Ayalew Benny B Corrado Greg S GS Peng Lily H LH Tse Daniel D Müller Heimo H Xu Zhaoyang Z Liu Yun Y Stumpe Martin C MC Zatloukal Kurt K Mermel Craig H CH
NPJ digital medicine 20210419 1
Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95% CI: 0.66-0.73) an ...[more]