Project description:BackgroundCOVID-19 is diagnosed via detection of SARS-CoV-2 RNA using real time reverse-transcriptase polymerase chain reaction (rtRT-PCR). Performance of many SARS-CoV-2 rtRT-PCR assays is not entirely known due to the lack of a gold standard. We sought to evaluate the false negative rate (FNR) and sensitivity of our laboratory-developed SARS-CoV-2 rtRT-PCR targeting the envelope (E) and RNA-dependent RNA-polymerase (RdRp) genes.MethodsSARS-CoV-2 rtRT-PCR results at the Public Health Laboratory (Alberta, Canada) from January 21 to April 18, 2020 were reviewed to identify patients with an initial negative rtRT-PCR followed by a positive result on repeat testing within 14 days (defined as discordant results). Negative samples from these discordant specimens were re-tested using three alternate rtRT-PCR assays (targeting the E gene and N1/N2 regions of the nucleocapsid genes) to assess for false negative (FN) results.ResultsDuring the time period specified, 95,919 patients (100,001 samples) were tested for SARS-CoV-2. Of these, 49 patients were found to have discordant results including 49 positive and 52 negative swabs. Repeat testing of 52 negative swabs found five FNs (from five separate patients). Assuming 100% specificity of the diagnostic assay, the FNR and sensitivity in this group of patients with discordant testing was 9.3% (95% CI 1.5-17.0%) and 90.7% (95% CI 82.6-98.9%) respectively.ConclusionsStudies to understand the FNR of routinely used assays are important to confirm adequate clinical performance. In this study, most FN results were due to low amounts of SARS-CoV-2 virus concentrations in patients with multiple specimens collected during different stages of infection. Post-test clinical evaluation of each patient is advised to ensure that rtRT-PCR results are not the only factor in excluding COVID-19.
Project description:BackgroundInfection is the most important cause of non-relapse mortality in hematologic malignancy patients, leading to increased costs and prolonged hospitalization times. However, comprehensive and comparable reports on infection-specific mortality (ISM) trends in hematologic malignancy patients are lacking.ObjectivesWe aimed to provide updated ISM trends and factors associated with ISM among hematologic malignancy patients.DesignThis is a retrospective study.MethodsPatients diagnosed with the five most common hematologic malignancies from 1983 to 2016 from the Surveillance, Epidemiology, and End Results database were included. Joinpoint regression was used to analyze mortality trends.ResultsISM decreased beginning in 1983, 1988, and 1994, with yearly decreases of -2.1% for acute leukemia (AL), -1.3% for Hodgkin lymphoma (HL), and -14.3% for non-Hodgkin lymphoma (NHL). In contrast, ISM in patients with chronic leukemia (CL) and multiple myeloma (MM) increased dramatically beginning in 2000, with yearly increases of 2.8% and 3.3%, respectively. ISM rates were higher in males than in females across all hematologic malignancy subtypes. The mortality trends significantly differed according to race, age, sex, and stage, which could help in further etiological investigations. Moreover, male sex, older age at diagnosis, black race, and unmarried status were poor prognostic factors for ISM across all hematologic malignancy subtypes.ConclusionA promising downward trend in ISM in recent years occurred in patients with AL, HL, and NHL; however, ISM increased dramatically in patients with CL and MM. Our data suggest that risk assessment and careful infection monitoring are recommended for hematologic malignancy patients, particularly those with CL and MM.
Project description:COVID-19 has been declared a pandemic by the world health organization. Patients with cancer, and particularly hematologic malignancies may be at higher risk for severe complications due to their malignancy, immune dysregulation, therapy, and associated comorbidities. The oncology community has been proactive in issuing practice guidelines to help optimize management, and limit infection risk and complications from SARS-COV-2. Although hematologic malignancies account for only 10% of all cancers, their management is particularly complex, especially in the time of COVID-19. Screening or early detection of COVID-19 are central for preventative/mitigation strategy, which is the best current strategy in our battle against COVID-19. Herein, we provide an overview of COVID-19 screening strategies and highlight the unique aspects of treating patients with hematologic malignancies.
Project description:Patients with hematologic malignancies are particularly vulnerable to infections due to underlying humoral and cellular immune dysfunction, cytotoxic chemotherapy regimens, advanced age, and the presence of comorbid conditions. Infection from severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic, has become a leading cause of death globally and has disproportionally affected this high-risk population. Here, we review the cumulative evidence demonstrating worse outcomes for patients with hematologic malignancies when compared to patients with solid tumors and the general population. We examine risk factors shared with the general population (age, sex, comorbid conditions, and race) and those that are cancer-specific (cytotoxic chemotherapy, progressive disease, and cancer type), all of which confer an increased risk of severe COVID-19. Despite the historical exclusion of cancer patients from COVID-19 therapy trials, we review the emerging evidence that patients with hematologic malignancies benefit from specific treatments such as convalescent plasma. Although COVID-19 vaccines are significantly less effective in this patient population, encouraging results are observed in a subset of these patients after receiving a booster dose.
Project description:Initial studies that described the novel coronavirus (COVID-19) reported increased morbidity and mortality in patients with cancer. Of this group, patients with hematologic malignancies (HM) had the highest disease severity and death rates. Subsequent studies have attempted to better describe how COVID-19 affects patients with HM. However, these studies have yielded variable and often contradictory results. We present our single-institution experience with patients with HM who were diagnosed with COVID-19 from March 2020 to March 2021. We report 62 total cases with 10 patients who died during this time. The overall mortality was 16.1%. Mortality during the first two waves of COVID was 27.8% and 25%. Mortality during the third wave of COVID was 10%. The median age of patients was 67 years (range 20-89 years). 55% of patients had lymphoid malignancies and the majority had active disease at the time of diagnosis with COVID-19. 87% of patients had more than one co-morbidity. Important co-morbidities included cardiovascular disease and smoking history. 38.7% of patients had asymptomatic or mild disease, 54.8% required hospitalization, and 17.5% required ICU level care. In patients who required ICU level care, the mortality was 60%.
Project description:After lifting the COVID-19 lockdown restrictions and opening businesses, screening is essential to prevent the spread of the virus. Group testing could be a promising candidate for screening to save time and resources. However, due to the high false-negative rate (FNR) of the RT-PCR diagnostic test, we should be cautious about using group testing because a group's false-negative result identifies all the individuals in a group as uninfected. Repeating the test is the best solution to reduce the FNR, and repeats should be integrated with the group-testing method to increase the sensitivity of the test. The simplest way is to replicate the test twice for each group (the 2Rgt method). In this paper, we present a new method for group testing (the groupMix method), which integrates two repeats in the test. Then we introduce the 2-stage sequential version of both the groupMix and the 2Rgt methods. We compare these methods analytically regarding the sensitivity and the average number of tests. The tradeoff between the sensitivity and the average number of tests should be considered when choosing the best method for the screening strategy. We applied the groupMix method to screening 263 people and identified 2 infected individuals by performing 98 tests. This method achieved a 63% saving in the number of tests compared to individual testing. Our experimental results show that in COVID-19 screening, the viral load can be low, and the group size should not be more than 6; otherwise, the FNR increases significantly. A web interface of the groupMix method is publicly available for laboratories to implement this method.
Project description:IntroductionThe global pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It seems that there is an association between blood cancer and an increased risk of severe COVID-19. This study aimed to review the literature reporting the COVID-19 outcomes in patients with hematological malignancies.Material and methodsIn this systematic review and meta-analysis, Pubmed, Embase, and Web of Science databases were searched using the following keywords: COVID-19, SARS-CoV-2, blood cancer, myeloma, lymphoma, and leukemia. All the published articles in English from January 1, 2019, until March 10, 2021 were collected and evaluated.ResultsIn total, 53 studies with 2395 patients were included based on inclusion criteria. Most of these studies took place in Spain (14.81%), followed by the USA (11.11%), China (9.26%), and the UK (9.26%). More than half of COVID-19 patients with hematological malignancy were male (56.73%). Oxygen therapy played an important role in COVID-19 treatment. Moreover, anticoagulant therapies such as enoxaparin and heparin were two great assists for these patients. Fever (74.24%), cough (67.64%), and fatigue (53.19%) were the most reported clinical manifestations. In addition, hypertension and dyslipidemia were the most common comorbidities. The mortality rate due to COVID-19 in patients with hematological malignancies was 21.34%.ConclusionThis study demonstrated that hematologic cancer patients were more susceptible to a severe COVID-19 than patients without blood cancer. Thus, the management of COVID-19 in these patients requires much more attention, and their screening should perform regularly.