Unknown

Dataset Information

0

Hypoxia-Driven HIF-1α Activation Reprograms Pre-Activated NK Cells towards Highly Potent Effector Phenotypes via ERK/STAT3 Pathways.


ABSTRACT: NK cells are the predominant innate lymphocyte subsets specialized to kill malignant tumor cells. In patients with advanced cancer, hypoxic stress shapes NK cells toward tumor-resistant and immunosuppressive phenotypes, hence a strategy to restore NK function is critical for successful tumor immunotherapy. Here, we present evidence that pre-activation and subsequent HIF-1α-dependent metabolic shift of NK cells from oxidative phosphorylation into glycolysis are keys to overcome hypoxia-mediated impairment in NK cell survival, proliferation, and tumor cytotoxicity. Specifically, exposing NK cells to 7-9 days of normoxic culture followed by a pO2 of 1.5% hypoxia led to a highly potent effector phenotype via HIF-1α stabilization and upregulation of its target genes, BNIP3, PDK1, VEGF, PKM2, and LDHA. RNA sequencing and network analyses revealed that concomitant reduction of p21/p53 apoptotic pathways along with upregulation of cell cycle-promoting genes, CCNE1, CDC6, CDC20, and downregulation of cell cycle-arrest genes, CDKN1A, GADD45A, and MDM2 were accountable for superior expansion of NK cells via ERK/STAT3 activation. Furthermore, HIF-1α-dependent upregulation of the NKp44 receptor in hypoxia-exposed NK cells resulted in increased killing against K562, CEM, and A375 tumor targets both in-vitro and in-vivo tumor clearance assays. Therefore, hypoxic exposure on pre-activated proliferating NK cells triggered HIF-1α-dependent pathways to initiate coordinated regulation of cell cycle, apoptosis, and cytotoxicity at the global gene transcription level. Our results uncover a previously unidentified role of HIF-1α-mediated metabolic reprogramming that can reverse impaired NK effector phenotypes to generate requisite numbers of functionally robust NK cells for adoptive cellular therapy for clinical evaluation.

SUBMITTER: Lim SA 

PROVIDER: S-EPMC8071270 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8007797 | biostudies-literature
| S-EPMC8637566 | biostudies-literature
| S-EPMC7584946 | biostudies-literature
| S-EPMC3923075 | biostudies-literature
| S-EPMC9898070 | biostudies-literature
| S-EPMC8221997 | biostudies-literature
| S-EPMC3094047 | biostudies-literature
| S-EPMC4839370 | biostudies-literature
| S-EPMC6205837 | biostudies-literature
| S-EPMC10915707 | biostudies-literature