Project description:Purpose of reviewProne position has been widely used in the COVID-19 pandemic, with an extension of its use in patients with spontaneous breathing ('awake prone'). We herein propose a review of the current literature on prone position in mechanical ventilation and while spontaneous breathing in patients with COVID-19 pneumonia or COVID-19 ARDS.Recent findingsA literature search retrieved 70 studies separating whether patient was intubated (24 studies) or nonintubated (46 studies). The outcomes analyzed were intubation rate, mortality and respiratory response to prone. In nonintubated patient receiving prone position, the main finding was mortality reduction in ICU and outside ICU setting.SummaryThe final results of the several randomized control trials completed or ongoing are needed to confirm the trend of these results. In intubated patients, observational studies showed that responders to prone in terms of oxygenation had a better survival than nonresponders.
Project description:PurposeWhether the use of high-flow nasal oxygen in adult patients with COVID-19 associated acute respiratory failure improves clinically relevant outcomes remains unclear. We thus sought to assess the effect of high-flow nasal oxygen on ventilator-free days, compared to early initiation of invasive mechanical ventilation, on adult patients with COVID-19.MethodsWe conducted a multicentre cohort study using a prospectively collected database of patients with COVID-19 associated acute respiratory failure admitted to 36 Spanish and Andorran intensive care units (ICUs). Main exposure was the use of high-flow nasal oxygen (conservative group), while early invasive mechanical ventilation (within the first day of ICU admission; early intubation group) served as the comparator. The primary outcome was ventilator-free days at 28 days. ICU length of stay and all-cause in-hospital mortality served as secondary outcomes. We used propensity score matching to adjust for measured confounding.ResultsOut of 468 eligible patients, a total of 122 matched patients were included in the present analysis (61 for each group). When compared to early intubation, the use of high-flow nasal oxygen was associated with an increase in ventilator-free days (mean difference: 8.0 days; 95% confidence interval (CI): 4.4 to 11.7 days) and a reduction in ICU length of stay (mean difference: - 8.2 days; 95% CI - 12.7 to - 3.6 days). No difference was observed in all-cause in-hospital mortality between groups (odds ratio: 0.64; 95% CI: 0.25 to 1.64).ConclusionsThe use of high-flow nasal oxygen upon ICU admission in adult patients with COVID-19 related acute hypoxemic respiratory failure may lead to an increase in ventilator-free days and a reduction in ICU length of stay, when compared to early initiation of invasive mechanical ventilation. Future studies should confirm our findings.
Project description:Patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease 2019 (COVID-19), exhibit a wide spectrum of disease behavior. Since DNA methylation has been implicated in the regulation of viral infections and the immune system, we performed an epigenome- wide association study (EWAS) to identify candidate loci regulated by this epigenetic mark that could be involved in the onset of COVID-19 in patients without comorbidities.
Project description:ObjectiveTo estimate the effect of extracorporeal membrane oxygenation (ECMO) compared with conventional mechanical ventilation on outcomes of patients with covid-19 associated respiratory failure.DesignObservational study.Setting30 countries across five continents, 3 January 2020 to 29 August 2021.Participants7345 adults admitted to the intensive care unit with clinically suspected or laboratory confirmed SARS-CoV-2 infection.InterventionsECMO in patients with a partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) ratio <80 mm Hg compared with conventional mechanical ventilation without ECMO.Main outcome measureThe primary outcome was hospital mortality within 60 days of admission to the intensive care unit. Adherence adjusted estimates were calculated using marginal structural models with inverse probability weighting, accounting for competing events and for baseline and time varying confounding.Results844 of 7345 eligible patients (11.5%) received ECMO at any time point during follow-up. Adherence adjusted mortality was 26.0% (95% confidence interval 24.5% to 27.5%) for a treatment strategy that included ECMO if the PaO2/FiO2 ratio decreased <80 mm Hg compared with 33.2% (31.8% to 34.6%) had patients received conventional treatment without ECMO (risk difference -7.1%, 95% confidence interval -8.2% to -6.1%; risk ratio 0.78, 95% confidence interval 0.75 to 0.82). In secondary analyses, ECMO was most effective in patients aged <65 years and with a PaO2/FiO2 <80 mm Hg or with driving pressures >15 cmH2O during the first 10 days of mechanical ventilation.ConclusionsECMO was associated with a reduction in mortality in selected adults with covid-19 associated respiratory failure. Age, severity of hypoxaemia, and duration and intensity of mechanical ventilation were found to be modifiers of treatment effectiveness and should be considered when deciding to initiate ECMO in patients with covid-19.
Project description:Respiratory failure and mortality from COVID-19 result from virus- and inflammation-induced lung tissue damage. The intestinal microbiome and associated metabolites are implicated in immune responses to respiratory viral infections, however their impact on progression of severe COVID-19 remains unclear. We prospectively enrolled 71 patients with COVID-19 associated critical illness, collected fecal specimens within 3 days of medical intensive care unit admission, defined microbiome compositions by shotgun metagenomic sequencing, and quantified microbiota-derived metabolites (NCT 04552834). Of the 71 patients, 39 survived and 32 died. Mortality was associated with increased representation of Proteobacteria in the fecal microbiota and decreased concentrations of fecal secondary bile acids and desaminotyrosine (DAT). A microbiome metabolic profile (MMP) that accounts for fecal secondary bile acids and desaminotyrosine concentrations was independently associated with progression of respiratory failure leading to mechanical ventilation. Our findings demonstrate that fecal microbiota composition and microbiota-derived metabolite concentrations can predict the trajectory of respiratory function and death in patients with severe SARS-Cov-2 infection and suggest that the gut-lung axis plays an important role in the recovery from COVID-19.
Project description:PurposeProlonged observation could avoid invasive mechanical ventilation (IMV) and related risks in patients with Covid-19 acute respiratory failure (ARF) compared to initiating early IMV. We aimed to determine the association between ARF management strategy and in-hospital mortality.Materials and methodsPatients in the Weill Cornell Covid-19 registry who developed ARF between March 5 - March 25, 2020 were exposed to an early IMV strategy; between March 26 - April 1, 2020 to an intermediate strategy; and after April 2 to prolonged observation. Cox proportional hazards regression was used to model in-hospital mortality and test an interaction between ARF management strategy and modified sequential organ failure assessment (mSOFA).ResultsAmong 632 patients with ARF, 24% of patients in the early IMV strategy died versus 28% in prolonged observation. At lower mSOFA, prolonged observation was associated with lower mortality compared to early IMV (at mSOFA = 0, HR 0.16 [95% CI 0.04-0.57]). Mortality risk increased in the prolonged observation strategy group with each point increase in mSOFA score (HR 1.29 [95% CI 1.10-1.51], p = 0.002).ConclusionIn Covid-19 ARF, prolonged observation was associated with a mortality benefit at lower mSOFA scores, and increased mortality at higher mSOFA scores compared to early IMV.
Project description:BackgroundCOVID-19's pulmonary manifestations are broad, ranging from pneumonia with no supplemental oxygen requirements to acute respiratory distress syndrome (ARDS) with acute respiratory failure (ARF). In response, new oxygenation strategies and therapeutics have been developed, but their large-scale effects on outcomes in severe COVID-19 patients remain unknown. Therefore, we aimed to examine the trends in mortality, mechanical ventilation, and cost over the first six months of the pandemic for adult COVID-19 patients in the US who developed ARDS or ARF.Methods and findingsThe Vizient Clinical Data Base, a national database comprised of administrative, clinical, and financial data from academic medical centers, was queried for patients ≥ 18-years-old with COVID-19 and either ARDS or ARF admitted between 3/2020-8/2020. Demographics, mechanical ventilation, length of stay, total cost, mortality, and discharge status were collected. Mann-Kendall tests were used to assess for significant monotonic trends in total cost, mechanical ventilation, and mortality over time. Chi-square tests were used to compare mortality rates between March-May and June-August. 110,223 adult patients with COVID-19 ARDS or ARF were identified. Mean length of stay was 12.1±13.3 days and mean total cost was $35,991±32,496. Mechanical ventilation rates were 34.1% and in-hospital mortality was 22.5%. Mean cost trended downward over time (p = 0.02) from $55,275 (March) to $18,211 (August). Mechanical ventilation rates trended down (p<0.01) from 53.8% (March) to 20.3% (August). Overall mortality rates also decreased (p<0.01) from 28.4% (March) to 13.7% (August). Mortality rates in mechanically ventilated patients were similar over time (p = 0.45), but mortality in patients not requiring mechanical ventilation decreased from March-May compared to June-July (13.5% vs 4.6%, p<0.01).ConclusionsThis study describes the outcomes of a large cohort with COVID-19 ARDS or ARF and the subsequent decrease in cost, mechanical ventilation, and mortality over the first 6 months of the pandemic in the US.