Project description:We describe a successful bioprosthetic annular stretching in a patient with severe prosthetic aortic valve stenosis from a degenerated 19-mm Mitroflow valve (Sorin Group USA Inc, Arvada, CO, USA). This technique allowed for implantation of a 23-mm Evolut-R Pro valve (Medtronic, Minneapolis, MN, USA) with significant improvement in hemodynamics after prosthetic annular stretching. We have also summarized other case series and case reports which have previously described similar techniques. <Learning objective: Transcatheter valve-in-valve procedure may not be feasible in certain patients who have a relatively smaller size bioprosthetic valve. Cracking/stretching the annular ring of the smaller prosthetic valve to deploy a larger transcatheter valve is a potential option in these patients. Clinicians must be cognizant of the possible pitfalls, contraindications, and other technical aspects to choose the right patient for this procedure.>.
Project description:Coronary artery obstruction is an uncommon yet devastating complication of transcatheter aortic valve replacement (TAVR) and may necessitate leaflet modification. A 38-year-old man presented to our center with quadricuspid aortic valve with severe aortic regurgitation. Double leaflet modification was performed with the Bioprosthetic or native Aortic Scallop Intentional Laceration to prevent Iatrogenic Coronary Artery obstruction (BASILICA) technique prior to TAVR, creating 6 leaflets from 4. The patient tolerated the procedure well with symptomatic improvement. Follow-up transthoracic echocardiogram showed normal bioprosthetic aortic valve function. This case demonstrates feasibility of this procedure with comprehensive preprocedural analysis and intraprocedural imaging guidance.
Project description:ObjectivesThis study aimed to assess the clinical outcome of the bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary obstruction (BASILICA) technique in a single-center patient cohort considered at high or prohibitive risk of transcatheter aortic valve implantation (TAVI)-induced coronary obstruction.MethodsBetween October 2019 and January 2021, a total of 15 consecutive patients (age 81.0 [78.1, 84.4] years; 53.3% female; EuroSCORE II 10.6 [6.3, 14.8] %) underwent BASILICA procedure prior to TAVI at our institution. Indications for TAVI were degeneration of stented (n = 12, 80.0%) or stentless (n = 1, 6.7%) bioprosthetic aortic valves, or calcific stenosis of native aortic valves (n = 2, 13.3%), respectively. Individual risk of TAVI-induced coronary obstruction was assessed by pre-procedural computed tomography analysis. Procedural and 30-day outcomes were documented in accordance with Valve Academic Research Consortium (VARC)-2 criteria.ResultsBASILICA was attempted for single left coronary cusp in 12 patients (80.0%), for single right coronary cusp in 2 patients (13.3%), and for both cusps in 1 patient (6.7%), respectively. The procedure was feasible in 13 patients (86.7%) resulting in effective prevention of coronary obstruction, whilst TAVI was performed without prior successful bioprosthetic leaflet laceration in two patients (13.3%). In one of these patients (6.7%), additional chimney stenting immediately after TAVI was performed. No all-cause deaths or strokes were documented after 30 days.ConclusionThe BASILICA technique appears to be a feasible, safe and effective concept to avoid iatrogenic coronary artery obstruction during TAVI in both native and bioprosthetic valves of patients at high or prohibitive risk. ClinicalTrials.gov Identifier: NCT04227002 (Hamburg AoRtic Valve cOhoRt).
Project description:BackgroundRecently, the Valve Academic Research Consortium (VARC)-3 criteria redefined bioprosthetic valve dysfunction (BVD) after transcatheter aortic valve implantation (TAVI). However, the rate of BVD is scarcely reported in current practice.AimsWe aimed to evaluate the rate and predictors of BVD after TAVI based on the VARC-3 criteria.MethodsWe retrospectively analysed patients who had undergone TAVI using single-centre data. BVD was reported as exposure-adjusted event rates with a patient-year unit (per 100 patient-years). Predictors of BVD after TAVI were analysed using Fine-Gray competing risk regression to account for the competing risk of death.ResultsAmong 514 patients, the rate of BVD was 7.5 events per 100 patient-years (n=74) at a median follow-up of 1.9 years. The main cause of BVD was moderate or severe prosthesis-patient mismatch (PPM; n=59). The Fine-Gray model demonstrated that predilatation was associated with a lower rate of BVD, mainly moderate or severe PPM (adjusted subdistribution hazard ratio [sub-HR] 0.42, 95% confidence interval [CI]: 0.21-0.88). In a subgroup analysis, the patients with a small aortic annulus (area <400 mm2 or perimeter <72 mm) tended to benefit from predilatation (p for interaction=0.03). The same regression model also demonstrated that a small balloon-expandable valve (BEV; ≤23 mm) was associated with a higher rate of BVD (adjusted sub-HR 2.46, 95% CI: 1.38-4.38).ConclusionsOur study suggested that the rate of BVD in patients undergoing TAVI is relatively low at midterm follow-up. Predilatation, particularly in small annuli and small BEV might have an impact on BVD, mainly caused by moderate or severe PPM, after TAVI.
Project description:BackgroundMajor uncertainties remain regarding disease activity within the retained native aortic valve, and regarding bioprosthetic valve durability, after transcatheter aortic valve implantation (TAVI). We aimed to assess native aortic valve disease activity and bioprosthetic valve durability in patients with TAVI in comparison with subjects with bioprosthetic surgical aortic valve replacement (SAVR).MethodsIn a multicenter cross-sectional observational cohort study, patients with TAVI or bioprosthetic SAVR underwent baseline echocardiography, computed tomography angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography. Participants (n=47) were imaged once with 18F-NaF positron emission tomography/computed tomography either at 1 month (n=9, 19%), 2 years (n=22, 47%), or 5 years (16, 34%) after valve implantation. Patients subsequently underwent serial echocardiography to assess for changes in valve hemodynamic performance (change in peak aortic velocity) and evidence of structural valve dysfunction. Comparisons were made with matched patients with bioprosthetic SAVR (n=51) who had undergone the same imaging protocol.ResultsIn patients with TAVI, native aortic valves demonstrated 18F-NaF uptake around the outside of the bioprostheses that showed a modest correlation with the time from TAVI (r=0.36, P=0.023). 18F-NaF uptake in the bioprosthetic leaflets was comparable between the SAVR and TAVI groups (target-to-background ratio, 1.3 [1.2-1.7] versus 1.3 [1.2-1.5], respectively; P=0.27). The frequencies of imaging evidence of bioprosthetic valve degeneration at baseline were similar on echocardiography (6% versus 8%, respectively; P=0.78), computed tomography (15% versus 14%, respectively; P=0.87), and positron emission tomography (15% versus 29%, respectively; P=0.09). Baseline 18F-NaF uptake was associated with a subsequent change in peak aortic velocity for both TAVI (r=0.7, P<0.001) and SAVR (r=0.7, P<0.001). On multivariable analysis, 18F-NaF uptake was the only predictor of peak velocity progression (P<0.001).ConclusionsIn patients with TAVI, native aortic valves demonstrate evidence of ongoing active disease. Across imaging modalities, TAVI degeneration is of similar magnitude to bioprosthetic SAVR, suggesting comparable midterm durability. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02304276.
Project description:AimsBioprosthetic aortic valve degeneration demonstrates pathological similarities to aortic stenosis. Lipoprotein(a) [Lp(a)] is a well-recognized risk factor for incident aortic stenosis and disease progression. The aim of this study is to investigate whether serum Lp(a) concentrations are associated with bioprosthetic aortic valve degeneration.Methods and resultsIn a post hoc analysis of a prospective multimodality imaging study (NCT02304276), serum Lp(a) concentrations, echocardiography, contrast-enhanced computed tomography (CT) angiography, and 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) were assessed in patients with bioprosthetic aortic valves. Patients were also followed up for 2 years with serial echocardiography. Serum Lp(a) concentrations [median 19.9 (8.4-76.4) mg/dL] were available in 97 participants (mean age 75 ± 7 years, 54% men). There were no baseline differences across the tertiles of serum Lp(a) concentrations for disease severity assessed by echocardiography [median peak aortic valve velocity: highest tertile 2.5 (2.3-2.9) m/s vs. lower tertiles 2.7 (2.4-3.0) m/s, P = 0.204], or valve degeneration on CT angiography (highest tertile n = 8 vs. lower tertiles n = 12, P = 0.552) and 18F-NaF PET (median tissue-to-background ratio: highest tertile 1.13 (1.05-1.41) vs. lower tertiles 1.17 (1.06-1.53), P = 0.889]. After 2 years of follow-up, there were no differences in annualized change in bioprosthetic hemodynamic progression [change in peak aortic valve velocity: highest tertile [0.0 (-0.1-0.2) m/s/year vs. lower tertiles 0.1 (0.0-0.2) m/s/year, P = 0.528] or the development of structural valve degeneration.ConclusionSerum lipoprotein(a) concentrations do not appear to be a major determinant or mediator of bioprosthetic aortic valve degeneration.
Project description:BackgroundBioprosthetic aortic valve degeneration is increasingly common, often unheralded, and can have catastrophic consequences.ObjectivesThe authors sought to assess whether 18F-fluoride positron emission tomography (PET)-computed tomography (CT) can detect bioprosthetic aortic valve degeneration and predict valve dysfunction.MethodsExplanted degenerate bioprosthetic valves were examined ex vivo. Patients with bioprosthetic aortic valves were recruited into 2 cohorts with and without prosthetic valve dysfunction and underwent in vivo contrast-enhanced CT angiography, 18F-fluoride PET, and serial echocardiography during 2 years of follow-up.ResultsAll ex vivo, degenerate bioprosthetic valves displayed 18F-fluoride PET uptake that colocalized with tissue degeneration on histology. In 71 patients without known bioprosthesis dysfunction, 14 had abnormal leaflet pathology on CT, and 24 demonstrated 18F-fluoride PET uptake (target-to-background ratio 1.55 [interquartile range (IQR): 1.44 to 1.88]). Patients with increased 18F-fluoride uptake exhibited more rapid deterioration in valve function compared with those without (annualized change in peak transvalvular velocity 0.30 [IQR: 0.13 to 0.61] vs. 0.01 [IQR: -0.05 to 0.16] ms-1/year; p < 0.001). Indeed 18F-fluoride uptake correlated with deterioration in all the conventional echocardiographic measures of valve function assessed (e.g., change in peak velocity, r = 0.72; p < 0.001). Each of the 10 patients who developed new overt bioprosthesis dysfunction during follow-up had evidence of 18F-fluoride uptake at baseline (target-to-background ratio 1.89 [IQR: 1.46 to 2.59]). On multivariable analysis, 18F-fluoride uptake was the only independent predictor of future bioprosthetic dysfunction.Conclusions18F-fluoride PET-CT identifies subclinical bioprosthetic valve degeneration, providing powerful prediction of subsequent valvular dysfunction and highlighting patients at risk of valve failure. This technique holds major promise in the diagnosis of valvular degeneration and the surveillance of patients with bioprosthetic valves. (18F-Fluoride Assessment of Aortic Bioprosthesis Durability and Outcome [18F-FAABULOUS]; NCT02304276).
Project description:Sutureless bioprosthetic valves such as the Sorin Perceval S valve (SPV) have been used in patients with aortic stenosis that require surgical aortic valve replacement (SAVR). These prostheses have been marketed on the basis of their rapid implantation techniques with avoidance of sutures and reduced aortic cross-clamp times. We report a case of an early failure of a SPV nearly 4 years after implantation in a 58-year-old woman who was low-risk. While the patient's symptoms initially improved with SAVR with a sutureless bioprosthetic valve, they progressively worsened as the valve degraded, and the leaflets became increasingly calcified and stenotic ultimately, requiring reoperative SAVR with a St. Jude mechanical valve. This case raises the issue of the lack of much-needed data describing the long-term durability and hemodynamic performance of these valves, particularly in a low-risk patient with excellent functional status. We hope to shed further insight into the lack of long-term studies on patients with SPV to assess their longevity and long-term effectiveness, as well as elucidation of possible prevention and monitoring of these potential complications. The use of newer generation prostheses, although attractive for their ease of implantation, potentially carries higher long-term risk due to shorter durability leading to reintervention to address valve deterioration. This is especially true in low-risk patients who are young and active. Cardiology and cardiothoracic surgery societies need to develop a universal registry with follow-up of all valves in order to track and study the durability of these valves, and to evaluate for incidence of known and potential complications.
Project description:Cardiobacterium valvarum was isolated from the blood of a 71-year-old man with fatal aortic valve endocarditis. The API NH system was used for phenotypic characterization of the C. valvarum strain. This is the first case of infective endocarditis caused by C. valvarum in Germany and the first case worldwide affecting a prosthetic valve and lacking an obvious dental focus.