Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization.
Ontology highlight
ABSTRACT: Glycopolymers have attracted increased attention as functional polymeric materials, and simple methods for synthesizing glycopolymers remain needed. This paper reports the aqueous one-pot and chemoenzymatic synthesis of four types of glycopolymers via two reactions: the β-galactosidase-catalyzed glycomonomer synthesis using 4,6-dimetoxy triazinyl β-D-galactopyranoside and hydroxy group-containing (meth)acrylamide and (meth)acrylate derivatives as the activated glycosyl donor substrate and as the glycomonomer precursors, respectively, followed by radical copolymerization of the resulting glycomonomer and excess glycomonomer precursor without isolating the glycomonomers. The resulting glycopolymers bearing galactose moieties exhibited specific and strong interactions with the lectin peanut agglutinin as glycoclusters.
SUBMITTER: Tanaka T
PROVIDER: S-EPMC8116861 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA