Project description:BackgroundWomen with endometriosis have been shown to have a reduced vagal tone as compared with controls and vagotomy promoted while vagus nerve stimulation (VNS) decelerated the progression of endometriosis in mice. Extensive research also has shown that the activation of the cholinergic anti-inflammatory pathway by VNS activates α7 nicotinic acetylcholine receptor (α7nAChR), potently reducing inflammation. Yet whether α7nAChR plays any role in endometriosis is unknown. We evaluated its expression in normal endometrium, ovarian and deep endometriotic lesions, and evaluated its role in the development of endometriosis.MethodsImmunohistochemistry analyses of α7nAChR in endometriotic lesions as well as control endometrium, and quantification of tissue fibrosis by Masson trichrome staining were performed. Mouse experiments were conducted to evaluate the impact of α7nAChR activation or suppression on lesional progression and possible therapeutic effect. Finally, in vitro experiments were conducted to evaluate the effect of activation of α7nAChR on epithelial-mesenchymal transition (EMT), fibroblast-to-myofibroblast transdifferentiation (FMT), smooth muscle metaplasia (SMM) and fibrogenesis in an endometriotic epithelial cell line and primary endometriotic stromal cells derived from ovarian endometrioma tissue samples.ResultsImmunostaining of α7nAChR was significantly reduced in human endometriotic epithelial cells as compared with their counterpart in normal endometrium. Lesional α7nAChR staining levels correlated negatively with lesional fibrosis and the severity of dysmenorrhea. The α7nAChR agonist significantly impeded the development of endometriotic lesions in mouse models possibly through hindrance of EMT and FMT. It also demonstrated therapeutic effects in mice with induced deep endometriosis. Treatment of endometriotic epithelial and stromal cells with an α7nAChR agonist significantly abrogated platelet-induced EMT, FMT and SMM, and suppressed cellular contractility and collagen production.Conclusionsα7nAChR is suppressed in endometriotic lesions, and its activation by pharmacological means can impede EMT, FMT, SMM, and fibrogenesis of endometriotic lesions. As such, α7nAChR can be rightfully viewed as a potential target for therapeutic invention.Trial registrationNot applicable.
Project description:Diseases such as asthma are exacerbated by inflammation, cigarette smoke and even nicotine delivery devices such as e-cigarettes. However, there is currently little information on how nicotine affects airways, particularly in humans, and changes in the context of inflammation or asthma. Here, a longstanding assumption is that airway smooth muscle (ASM) that is key to bronchoconstriction has muscarinic receptors while nicotinic receptors (nAChRs) are only on airway neurons. In this study, we tested the hypothesis that human ASM expresses α7nAChR and explored its profile in inflammation and asthma using ASM of non-asthmatics vs. mild-moderate asthmatics. mRNA and western analysis showed the α7 subunit is most expressed in ASM cells and further increased in asthmatics and smokers, or by exposure to nicotine, cigarette smoke or pro-inflammatory cytokines TNFα and IL-13. In these effects, signaling pathways relevant to asthma such as NFκB, AP-1 and CREB are involved. These novel data demonstrate the expression of α7nAChR in human ASM and suggest their potential role in asthma pathophysiology in the context of nicotine exposure.
Project description:HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy are primarily manifested as impaired behaviours, glial activation/neuroinflammation and compromised neuronal integrity, for which there are no effective treatments currently available. In the current study, we used doxycycline-inducible astrocyte-specific HIV Tat transgenic mice (iTat), a surrogate HAND model, and determined effects of PNU-125096, a positive allosteric modulator of α7 nicotinic acetylcholine receptor (α7 nAChR) on Tat-induced behavioural impairments and neuropathologies. We showed that PNU-125096 treatment significantly improved locomotor, learning and memory deficits of iTat mice while inhibited glial activation and increased PSD-95 expression in the cortex and hippocampus of iTat mice. Using α7 nAChR knockout mice, we showed that α7 nAChR knockout eliminated the protective effects of PNU-125096 on iTat mice. In addition, we showed that inhibition of p38 phosphorylation by SB239063, a p38 MAPK-specific inhibitor exacerbated Tat neurotoxicity in iTat mice. Last, we used primary mouse cortical individual cultures and neuron-astrocytes co-cultures and in vivo staining of iTat mouse brain tissues and showed that glial activation was directly involved in the interplay among Tat neurotoxicity, α7 nAChR activation and the p38 MAPK signalling pathway. Taken together, these findings demonstrated for the first time that α7 nAChR activation led to protection against HAND and suggested that α7 nAChR modulator PNU-125096 holds significant promise for development of therapeutics for HAND.
Project description:Human Cys-loop receptors are important therapeutic targets. High-resolution structures are essential for rational drug design, but only a few are available due to difficulties in obtaining sufficient quantities of protein suitable for structural studies. Although expression of proteins in E. coli offers advantages of high yield, low cost, and fast turnover, this approach has not been thoroughly explored for full-length human Cys-loop receptors because of the conventional wisdom that E. coli lacks the specific chaperones and post-translational modifications potentially required for expression of human Cys-loop receptors. Here we report the successful production of full-length wild type human α7nAChR from E. coli Chemically induced chaperones promote high expression levels of well-folded proteins. The choice of detergents, lipids, and ligands during purification determines the final protein quality. The purified α7nAChR not only forms pentamers as imaged by negative-stain electron microscopy, but also retains pharmacological characteristics of native α7nAChR, including binding to bungarotoxin and positive allosteric modulators specific to α7nAChR. Moreover, the purified α7nAChR injected into Xenopus oocytes can be activated by acetylcholine, choline, and nicotine, inhibited by the channel blockers QX-222 and phencyclidine, and potentiated by the α7nAChR specific modulators PNU-120596 and TQS. The successful generation of functional human α7nAChR from E. coli opens a new avenue for producing mammalian Cys-loop receptors to facilitate structure-based rational drug design.
Project description:The intracellular domain (ICD) of Cys-loop receptors mediates diverse functions. To date, no structure of a full-length ICD is available due to challenges stemming from its dynamic nature. Here, combining nuclear magnetic resonance (NMR) and electron spin resonance experiments with Rosetta computations, we determine full-length ICD structures of the human α7 nicotinic acetylcholine receptor in a resting state. We show that ~57% of the ICD residues are in highly flexible regions, primarily in a large loop (loop L) with the most mobile segment spanning ~50 Å from the central channel axis. Loop L is anchored onto the MA helix and virtually forms two smaller loops, thereby increasing its stability. Previously known motifs for cytoplasmic binding, regulation, and signaling are found in both the helices and disordered flexible regions, supporting the essential role of the ICD conformational plasticity in orchestrating a broad range of biological processes.
Project description:Patients with dry eye disease (DED) often exhibit neurological abnormalities and may even suffer from neuropathic pain and pain-related anxiety or depression. However, addressing nerve abnormalities in DED remains a formidable challenge, as current therapies fail to halt disease progression. Our study found that activating α-7 nicotinic acetylcholine receptor (α7nAChR), a pivotal regulator in the anti-inflammatory pathway connecting the nervous and immune systems, effectively restores corneal epithelium integrity and enhances nerve sensitivity in DED, pointing to its promising therapeutic potential. Furthermore, we have revealed that α7nAChR stimulates genes involved in immune-mediated inflammatory progression and neuroregulation, inhibits the expression of transient receptor potential vanilloid-1 (TRPV1), reinstates corneal nerve density, and alleviates anxiety-like behaviors associated with severe DED by downregulating the proportion of CD86+ M1 macrophages (pro-inflammatory phenotypes). In summary, our findings underscore the activation of α7nAChR as a pioneering therapeutic approach for preserving corneal nerves balance and controlling inflammation in DED.
Project description:Understanding insect nicotinic acetylcholine receptor (nAChR) subtypes is of major interest because they are the main target of several insecticides. In this study, we have cloned a cockroach Pameα7 subunit that encodes a 518 amino acid protein with futures typical of nAChR subunit, and sequence homology to α7 subunit. Pameα7 is differently expressed in the cockroach nervous system, in particular in the antennal lobes, optical lobes and the mushroom bodies where specific expression was found in the non-compact Kenyon cells. In addition, we found that cockroach Pameα7 subunits expressed in Xenopus laevis oocytes can assemble to form homomeric receptors. Electrophysiological recordings using the two-electrode voltage clamp method demonstrated that nicotine induced an I max current of -92 ± 27 nA at 1 mM. Despite that currents are low with the endogenous ligand, ACh, this study provides information on the first expression of cockroach α7 homomeric receptor.
Project description:The α7 nicotinic acetylcholine receptor plays critical roles in the central nervous system and in the cholinergic inflammatory pathway. This ligand-gated ion channel assembles as a homopentamer, is exceptionally permeable to Ca2+, and desensitizes faster than any other Cys-loop receptor. The α7 receptor has served as a prototype for the Cys-loop superfamily yet has proven refractory to structural analysis. We present cryo-EM structures of the human α7 nicotinic receptor in a lipidic environment in resting, activated, and desensitized states, illuminating the principal steps in the gating cycle. The structures also reveal elements that contribute to its function, including a C-terminal latch that is permissive for channel opening, and an anionic ring in the extracellular vestibule that contributes to its high conductance and calcium permeability. Comparisons among the α7 structures provide a foundation for mapping the gating cycle and reveal divergence in gating mechanisms in the Cys-loop receptor superfamily.
Project description:PurposeThe α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer's disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse.MethodsTo examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes.ResultsIn the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype transcripts in the α7 nAChR KO mice. However, the retinal layers showed complex patterns of transcript expression. In the ganglion cell layer (GCL), m2 and m4 mAChR subtype transcripts were significantly upregulated, while β3 and β4 nAChR subunit transcripts were significantly downregulated. In the inner portion of the inner nuclear layer (iINL), α2, α9, β4, nAChR subunit, and m3 and m4 mAChR subtype transcripts were significantly downregulated. In the outer portion of the inner nuclear layer (oINL), β2, β4, and m4 AChR subunit transcripts were significantly upregulated. Western blot experiments confirmed the protein expression of α3-α5 and α9-containing nAChR subunits and m1-m2 mAChR subtypes in mouse retinas. IHC results supported many of the mRNA changes observed. Finally, this is the first report of α9 and α10 nAChR subunit expressions in the retina of any species.ConclusionsRather than a simple upregulation of a single AChR subunit or subtype, the absence of the α7 nAChR in the KO mice was associated with complex layer-specific changes in the expression of AChR subunits and subtypes.
Project description:Zymosan, a natural compound, provokes acute peritonitis and multiple organ dysfunction that affects the kidney, beside other organs via exaggerated inflammatory response. The aim of the present study is to test the role of cholinergic anti-inflammatory pathway (CAP) in alleviating acute kidney injury (AKI) induced by zymosan in BALB/c mice, using galantamine, a cholinesterase inhibitor, known to act via α7 nicotinic acetylcholine receptor (α7 nAChR) to stimulate CAP. Galantamine verified its anti-inflammatory effect by elevating acetylcholine (ACh) level, while abating the interleukin-6/ janus kinase 2 (Y1007/1008)/ signal transducer and activator of transcription 3 (Y705) (IL-6/ pY(1007/1008)-JAK2/ pY705-STAT3) inflammatory axis, with a consequent inhibition in suppressor of cytokine signaling 3 (SOCS3). This effect entails also the nuclear factor-kappa B (p65)/ high mobility group box protein-1/ (NF-κB (p65)/ HMGB-1) signaling pathway. Furthermore, the reno-curattive effect of galantamine was associated by a reduction in plasma creatinine (Cr), cystatin (Cys)-C, IL-18, and renal neutrophil gelatinase-associated lipocalin (NGAL), as well as an improved histopathological structure. Blocking the α7 nAChR by methyllycaconitine abolished the beneficial effect of galantamine to document the involvement of this receptor and the CAP in the amelioration of AKI induced by zymosan.