Unknown

Dataset Information

0

Hierarchical dynamics in allostery following ATP hydrolysis monitored by single molecule FRET measurements and MD simulations.


ABSTRACT: We report on a study that combines advanced fluorescence methods with molecular dynamics (MD) simulations to cover timescales from nanoseconds to milliseconds for a large protein. This allows us to delineate how ATP hydrolysis in a protein causes allosteric changes at a distant protein binding site, using the chaperone Hsp90 as test system. The allosteric process occurs via hierarchical dynamics involving timescales from nano- to milliseconds and length scales from Ångstroms to several nanometers. We find that hydrolysis of one ATP is coupled to a conformational change of Arg380, which in turn passes structural information via the large M-domain α-helix to the whole protein. The resulting structural asymmetry in Hsp90 leads to the collapse of a central folding substrate binding site, causing the formation of a novel collapsed state (closed state B) that we characterise structurally. We presume that similar hierarchical mechanisms are fundamental for information transfer induced by ATP hydrolysis through many other proteins.

SUBMITTER: Wolf S 

PROVIDER: S-EPMC8179424 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5117765 | biostudies-literature
| S-EPMC2999562 | biostudies-literature
| S-EPMC4519929 | biostudies-literature
| S-EPMC4621615 | biostudies-literature
| S-EPMC8234384 | biostudies-literature
| S-EPMC3575810 | biostudies-other
| S-EPMC5984999 | biostudies-literature
| S-EPMC3207888 | biostudies-literature
| S-EPMC4889375 | biostudies-literature