Project description:India was severely affected by several waves of SARS-CoV-2 infection that occurred during April-June 2021 (second wave) and December 2021-January 2022 (third wave) and thereafter, resulting in >10 million new infections and a significant number of deaths. Global Initiative on Sharing Avian Influenza Data database was used to collect the sequence information of ~10,000 SARS-CoV-2 patients from India and our sequence analysis identified three variants B.1.1.7 (alpha, α), B1.617.2 (delta, Δ), B.1.1.529 (Omicron, Oo) and one Omicron sub-variant BA.2.75 as the primary drivers for SARS-CoV-2 waves in India. Structural visualization and analysis of important mutations of alpha, delta, Omicron and its sub-variants of SARS-CoV-2 Receptor-Binding Domain (RBD) was performed and our analysis clearly shows that mutations occur throughout the RBD, including the RBD surface responsible for human angiotensin-converting enzyme 2 (hACE-2) receptor-binding. A comparison between alpha, delta and omicron variants/sub-variants reveals many omicron mutations in the hACE-2 binding site and several other mutations within 5 Å of this binding region. Further, computational analysis highlights the importance of electrostatic interactions in stabilizing RBD-hACE-2-binding, especially in the omicron variant. Our analysis explores the likely role of key alpha, delta and omicron mutations on binding with hACE-2. Taken together, our study provides novel structural insights into the implications of RBD mutations in alpha, delta and omicron and its sub-variants that were responsible for India's SARS-CoV-2 surge.
Project description:BackgroundSevere acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) was found to be the causative microorganism of coronavirus disease 2019 (COVID-19), which started to spread in Wuhan, China. This study was to evaluate the effectiveness of questionnaire, symptoms-based screening, and polymerase chain reaction (PCR) screening of returnees from COVID-19-endemic areas on a chartered flight, to examine the proportion of infected persons and the proportion of asymptomatic persons among infected persons who returned from Wuhan.MethodsA retrospective cohort study was done in 7 tertiary medical institutions in Japan. A total of 566 Japanese who returned from Wuhan participated in the study.ResultsOverall, 11 of the 566 passengers had a positive SARS-CoV-2 PCR result for pharyngeal swabs and 6 were asymptomatic. Only fever differed between SARS-CoV-2-positive and -negative individuals (P < .043). Six of the 11 PCR-positive individuals were asymptomatic; 4 remained positive on day 10, and 1 asymptomatic person tested positive up to day 27. Two of the 11 were negative on the first PCR test and positive on the second.ConclusionsOur results will be important insights on screening returnees from locked-down cities, as well as providing important data on the proportion of asymptomatic individuals infected with SARS-CoV-2. A 13-day observation period and a second round of PCR may be effective to screen patients, including asymptomatic infections.
Project description:Respiratory infections, like the current COVID-19 pandemic, target epithelial cells in the respiratory tract. Alveolar macrophages (AMs) are tissue-resident macrophages located within the lung. They play a key role in the early phases of an immune response to respiratory viruses. AMs are likely the first immune cells to encounter SARS-CoV-2 during an infection and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first cytokines produced upon viral infection. In this study, AMs from non-infectious donors are challenged with SARS-CoV-2. We demonstrate that challenged AMs are incapable of sensing SARS-CoV-2 and of producing an IFN response in contrast to other respiratory viruses, like influenza A virus and Sendai virus, which trigger a robust IFN response. The absence of IFN production in AMs upon challenge with SARS-CoV2 could explain the initial asymptotic phase observed during COVID-19 and argues against AMs being the sources of proinflammatory cytokines later during infection.
Project description:The SARS-CoV-2 virus is continuously evolving, with appearance of new variants characterized by multiple genomic mutations, some of which can affect functional properties, including infectivity, interactions with host immunity, and disease severity. The rapid spread of new SARS-CoV-2 variants has highlighted the urgency to trace the virus evolution, to help limit its diffusion, and to assess effectiveness of containment strategies. We propose here a PCR-based rapid, sensitive and low-cost allelic discrimination assay panel for the identification of SARS-CoV-2 genotypes, useful for detection in different sample types, such as nasopharyngeal swabs and wastewater. The tests carried out demonstrate that this in-house assay, whose results were confirmed by SARS-CoV-2 whole-genome sequencing, can detect variations in up to 10 viral genome positions at once and is specific and highly sensitive for identification of all tested SARS-CoV-2 clades, even in the case of samples very diluted and of poor quality, particularly difficult to analyze.
Project description:The COVID-19 pandemic has been evolving in Pakistan with the emergence of the United Kingdom, South African, and Brazilian variants. These variants of concern (VOC) are known for increased transmissibility and can also be responsible for avoiding immune responses. The gold standard to detect VOC is sequencing, however routine genomic surveillance in resource-limited countries like Pakistan is not always readily available. The inadvertent detection of the B.1.1.7 (United Kingdom) VOC by a target failure due to the key deletion in spike Δ69-70 by commercially available PCR assay helps to understand target failures as an alternative approach to detect variants. In pursuit of VOC it was further discovered that a deletion in the ORF1a gene (ORF1a Δ3675-3677) is common in B.1.1.7, B.1.351 (South African), and P.1 (Brazilian) VOC. The Real-Time Quantitative PCR (RT-qPCR) assay can distinguish target failures and can discriminate SARS-CoV-2 VOC. The study uses positive samples archived in respective labs. Samples were divided into two groups. Group I constitutes 261 positive samples out of total of 16,964 (1.53%) performed from August till September 2020, while group II consists of 3501 positive samples out of a total of 46,041 (7.60%) performed, from November 2020 till January 2021. The RT-qPCR analysis showed that no VOC was present in positive samples of group I. However, a staggering difference in results was noted in group II where the positivity ratio increased exponentially and the VOC started appearing in significant numbers (53.64%). This concludes that the third wave in Pakistan is due to the importation of SARS-CoV-2 variants.
Project description:hACE2 transgenic mice were infected with the original SARS-CoV-2 strain (B.1) and the Beta (B.1.351) variant. Lung and spleen samples were collected 1 day post infection (DPI), 3 DPI and 5 DPI, and mRNA was sequenced.