Unknown

Dataset Information

0

Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry.


ABSTRACT: The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.

SUBMITTER: Luise A 

PROVIDER: S-EPMC8226665 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4427557 | biostudies-literature
| S-EPMC8543976 | biostudies-literature
| S-EPMC6109964 | biostudies-literature
| S-EPMC6195672 | biostudies-literature
| S-EPMC5353847 | biostudies-literature
| S-EPMC4813700 | biostudies-other
| S-EPMC5930140 | biostudies-literature
| S-EPMC7029676 | biostudies-literature
| S-EPMC6146919 | biostudies-literature
| S-EPMC8099777 | biostudies-literature