Unknown

Dataset Information

0

Protein-based condensation mechanisms drive the assembly of RNA-rich P granules.


ABSTRACT: Germ granules are protein-RNA condensates that segregate with the embryonic germline. In Caenorhabditis elegans embryos, germ (P) granule assembly requires MEG-3, an intrinsically disordered protein that forms RNA-rich condensates on the surface of PGL condensates at the core of P granules. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). We find that MEG-3 is a modular protein that uses its IDR to bind RNA and its C-terminus to drive condensation. The HMGL motif mediates binding to PGL-3 and is required for co-assembly of MEG-3 and PGL-3 condensates in vivo. Mutations in HMGL cause MEG-3 and PGL-3 to form separate condensates that no longer co-segregate to the germline or recruit RNA. Our findings highlight the importance of protein-based condensation mechanisms and condensate-condensate interactions in the assembly of RNA-rich germ granules.

SUBMITTER: Schmidt H 

PROVIDER: S-EPMC8238508 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7181197 | biostudies-literature
| S-EPMC6606616 | biostudies-literature
| S-EPMC4041438 | biostudies-literature
| S-EPMC4534351 | biostudies-literature
| S-EPMC7211619 | biostudies-literature
| S-EPMC8234964 | biostudies-literature
| S-EPMC2929181 | biostudies-literature
| S-EPMC7316138 | biostudies-literature
| S-EPMC7194247 | biostudies-literature
| S-EPMC2857123 | biostudies-literature