Project description:IntroductionSouth Asian individuals possess a high risk of chronic kidney disease. There is a need to study, evaluate, and compare the newly suggested glomerular filtration rate (eGFR) equations for accurate CKD diagnosis, staging, and drug dosing. This study aimed to (1) evaluate the European Kidney Function Consortium (EKFC), Pakistani CKD-EPI, and 2021 Race-Free CKD-EPI creatinine equation in the South Asian population with CKD and (2) to examine the expected implications on both CKD classification as well as End Stage Renal Disease (ESRD) prevalence across these equations in South Asian population.MethodsWe carried out a cross-sectional investigation on 385 participants, a CKD cohort ≥ 18 years, at Allama Iqbal Medical College, Jinnah Hospital, Lahore. Serum creatinine was measured by Jaffe's method and rGFR was measured by inulin clearance.ResultsPakistani CKD-EPI has a lower median difference at -1.33 ml/min/1.73m2 elevated precision (IQR) at 2.33 (-2.36, -0.03) and higher P30 value at 89.35% than 2021 CKD-EPI and EKFC equations. The mean difference (ml/min/1.73m2), 95% agreement limits (ml/min/1.73m2) of CKD-EPI PK: -1.18, -6.14, 2021 CKD-EPI: -5.98, -13.24 and EKFC: -5.62, -13.01 (P <0.001). These equations highly correlated to rGFR (P <0.001). An upward re-classification in GFR categories was shown by 2021 CKD-EPI and EKFC compared to the Pakistani CKD-EPI equation. However, there was an exception regarding the G5 category, where an elevated count of 217 (56.36%) was shown for CKD-EPI PK. The prevalence of ESRD was seen in entire age groups and prevailed among females more than in males overall equations.ConclusionsPakistani CKD-EPI exhibited outstanding performance, while 2021 CKD-EPI and EKFC demonstrated poor performances and could not show an adequate advantage for both CKD classification and prevalence of ESRD compared to Pakistani CKD-EPI. Therefore, Pakistani CKD-EPI appears optimal for this region and warrants future validation in other South Asian countries. In contrast, suitable measures must be implemented in Pakistani laboratories.
Project description:Label-free thermometry is a pivotal tool for many disciplines. However, most current approaches are only suitable for planar heat sources in steady state, thereby restricting the range of systems that can be reliably studied. Here, we introduce pump probe-based optical diffraction tomography (ODT) as a method to map temperature precisely and accurately in three dimensions (3D) at the single-particle level. To do so, we first systematically characterize the thermal landscape in a model system consisting of gold nanorods in a microchamber and then benchmark the results against simulations and quantitative phase imaging thermometry. We then apply ODT thermometry to resolve thermal landscapes inaccessible to other label-free approaches in the form of nonplanar heat sources embedded in complex environments and freely diffusing gold nanorods in a microchamber. Last, we foresee that our approach will find many applications where routine thermal characterization of heterogeneous nanoparticles samples in 3D or in non-steady state is required.
Project description:PurposeLow-field MRI offers favorable physical properties for SNR-efficient long readout acquisitions such as spiral and EPI. We used a 0.55 tesla (T) MRI system equipped with high-performance hardware to increase the sampling duty cycle and extend the TR of balanced steady-state free precession (bSSFP) cardiac cine acquisitions, which typically are limited by banding artifacts.MethodsWe developed a high-efficiency spiral in-out bSSFP acquisition, with zeroth- and first-gradient moment nulling, and an EPI bSSFP acquisition for cardiac cine imaging using a contemporary MRI system modified to operate at 0.55T. Spiral in-out and EPI bSSFP cine protocols, with TR = 8 ms, were designed to maintain both spatiotemporal resolution and breath-hold length. Simulations, phantom imaging, and healthy volunteer imaging studies (n = 12) were performed to assess SNR and image quality using these high sampling duty-cycle bSSFP sequences.ResultsSpiral in-out bSSFP performed favorably at 0.55T and generated good image quality, whereas EPI bSSFP suffered motion and flow artifacts. There was no difference in ejection fraction comparing spiral in-out with standard Cartesian imaging. Moreover, human images demonstrated a 79% ± 21% increase in myocardial SNR using spiral in-out bSSFP and 50% ± 14% increase in SNR using EPI bSSFP as compared with the reference Cartesian acquisition. Spiral in-out acquisitions at 0.55T recovered 69% ± 14% of the myocardial SNR at 1.5T.ConclusionEfficient bSSFP spiral in-out provided high-quality cardiac cine imaging and SNR recovery on a high-performance 0.55T MRI system.
Project description:BackgroundA novel framework is proposed to analyse metabolic fluxes in non-steady state conditions, based on the new concept of dynamic elementary mode (dynEM): an elementary mode activated partially depending on the time point of the experiment.ResultsTwo methods are introduced here: dynamic elementary mode analysis (dynEMA) and dynamic elementary mode regression discriminant analysis (dynEMR-DA). The former is an extension of the recently proposed principal elementary mode analysis (PEMA) method from steady state to non-steady state scenarios. The latter is a discriminant model that permits to identify which dynEMs behave strongly different depending on the experimental conditions. Two case studies of Saccharomyces cerevisiae, with fluxes derived from simulated and real concentration data sets, are presented to highlight the benefits of this dynamic modelling.ConclusionsThis methodology permits to analyse metabolic fluxes at early stages with the aim of i) creating reduced dynamic models of flux data, ii) combining many experiments in a single biologically meaningful model, and iii) identifying the metabolic pathways that drive the organism from one state to another when changing the environmental conditions.
Project description:Liquid-liquid phase separation yields spherical droplets that eventually coarsen to one large, stable droplet governed by the principle of minimal free energy. In chemically fueled phase separation, the formation of phase-separating molecules is coupled to a fuel-driven, non-equilibrium reaction cycle. It thus yields dissipative structures sustained by a continuous fuel conversion. Such dissipative structures are ubiquitous in biology but are poorly understood as they are governed by non-equilibrium thermodynamics. Here, we bridge the gap between passive, close-to-equilibrium, and active, dissipative structures with chemically fueled phase separation. We observe that spherical, active droplets can undergo a morphological transition into a liquid, spherical shell. We demonstrate that the mechanism is related to gradients of short-lived droplet material. We characterize how far out of equilibrium the spherical shell state is and the chemical power necessary to sustain it. Our work suggests alternative avenues for assembling complex stable morphologies, which might already be exploited to form membraneless organelles by cells.
Project description:Actin-based vesicular trafficking of Cdc42, leading to a polarized concentration of the GTPase, has been implicated in cell polarization, but it was recently debated whether this mechanism allows stable maintenance of cell polarity. Here we show that endocytosis and exocytosis are spatially segregated in the polar plasma membrane, with sites of exocytosis correlating with microdomains of higher concentration and slower diffusion of Cdc42 compared with surrounding regions. Numerical simulations using experimentally obtained diffusion coefficients and trafficking geometry revealed that non-uniform membrane diffusion of Cdc42 in fact enables temporally sustained cell polarity. We show further that phosphatidylserine, a phospholipid recently found to be crucial for cell polarity, is enriched in Cdc42 microdomains. Weakening a potential interaction between phosphatidylserine and Cdc42 enhances Cdc42 diffusion in the microdomains but impedes the strength of polarization. These findings demonstrate a critical role for membrane microdomains in vesicular trafficking-mediated cell polarity.
Project description:High-latitude warming is capable of accelerating permafrost degradation and the decomposition of previously frozen carbon. The existence of an analogous high-altitude feedback, however, has yet to be directly evaluated. We address this knowledge gap by coupling a radiocarbon-based model to 7 years (2008-2014) of continuous eddy covariance data from a snow-scoured alpine tundra meadow in Colorado, USA, where solifluction lobes are associated with discontinuous permafrost. On average, the ecosystem was a net annual source of 232 ± 54 g C m-2 (mean ± 1 standard deviation) to the atmosphere, and respiration of relatively radiocarbon-depleted (i.e., older) substrate contributes to carbon emissions during the winter. Given that alpine soils with permafrost occupy 3.6 × 106 km2 land area and are estimated to contain 66.3 Pg of soil organic carbon (4.5% of the global pool), this scenario has global implications for the mountain carbon balance and corresponding resource allocation to lower elevations.
Project description:Mycobacterium tuberculosis and many other members of the Actinomycetes family produce mycothiol, i.e., 1-d-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-d-glucopyranoside (MSH or AcCys-GlcN-Ins), to act against oxidative and antibiotic stress. The biosynthesis of MSH is essential for cell growth and has been proposed to proceed via a biosynthetic pathway involving four key enzymes, MshA-MshD. The MSH biosynthetic enzymes present potential targets for inhibitor design. With this as a long-term goal, we have carried out a kinetic and mechanistic characterization, using steady-state and pre-steady-state approaches, of the recombinant Mycobacterium smegmatis MshC. MshC catalyzes the ATP-dependent condensation of GlcN-Ins and cysteine to form Cys-GlcN-Ins. Initial velocity and inhibition studies show that the steady-state kinetic mechanism of MshC is a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding followed by cysteine binding, release of PPi, binding of GlcN-Ins, followed by the release of Cys-GlcN-Ins and AMP. The steady-state kinetic parameters were determined to be kcat equal to 3.15 s-1, and Km values of 1.8, 0.1, and 0.16 mM for ATP, cysteine, and GlcN-Ins, respectively. A stable bisubstrate analogue, 5'-O-[N-(l-cysteinyl)sulfamonyl]adenosine, exhibits competitive inhibition versus ATP and noncompetitive inhibition versus cysteine, with an inhibition constant of approximately 306 nM versus ATP. Single-turnover reactions of the first and second half reactions were determined using rapid-quench techniques, giving rates of approximately 9.4 and approximately 5.2 s-1, respectively, consistent with the cysteinyl adenylate being a kinetically competent intermediate in the reaction by MshC.
Project description:BackgroundChronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations estimate glomerular filtration rate (GFR) more accurately than the Modification of Diet in Renal Disease (MDRD) equation.HypothesisNew CKD-EPI equations improve risk stratification in patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS) and provide complementary information to the Global Registry of Acute Coronary Events (GRACE) risk score.MethodsWe studied 350 subjects (mean age, 68 ± 12 years; 70% male) with NSTE-ACS. Estimated GFR was calculated using the MDRD and new CKD-EPI equations based on serum creatinine (SCr) and/or cystatin C (CysC) concentrations obtained within 48 hours of hospital admission. The primary endpoint was all-cause death during follow-up.ResultsOver the study period (median, 648 days [interquartile range, 236-1042 days]), 31 patients died (0.05% events per person-year). Decedents had poorer renal-function parameters (P < 0.001). Both CysC-based CKD-EPI equations had the highest areas under the receiver operating characteristic curve for the prediction of all-cause mortality. After multivariate adjustment, only CysC-based CKD-EPI equations were independent predictors of all-cause mortality (CKD-EPISCr - CysC , per mL/min/1.73 m(2) : hazard ratio: 0.975, 95% confidence interval: 0.956-0.994, P = 0.009; CKD-EPICysC , per mL/min/1.73 m(2) : hazard ratio: 0.976, 95% confidence interval: 0.959-0.993, P = 0.005). Reclassification analyses showed that only CysC-based CKD-EPI equations improved predictive accuracy of the GRACE risk score.ConclusionsIn patients with NSTE-ACS, CysC-based CKD-EPI equations improved clinical risk stratification for mortality and added complementary prognostic information to the GRACE risk score.