A novel long non-coding RNA AC073352.1 promotes metastasis and angiogenesis via interacting with YBX1 in breast cancer.
Ontology highlight
ABSTRACT: Breast cancer is the major cause of cancer death worldwide in women. Patients with metastasis have poor prognosis and the mechanisms of breast cancer metastasis are not completely understood. Long non-coding RNAs (lncRNAs) have been shown to have crucial roles in breast cancer development and progression. However, the underlying mechanisms by which lncRNA-driven breast cancer metastasis are unknown. The main objective of this paper is to explore a functional lncRNA and its mechanisms in breast cancer. Here we identified a novel lncRNA AC073352.1 that was significantly upregulated in breast cancer tissues and was associated with advanced TNM stages and poor prognosis in breast cancer patients. In addition, AC073352.1 was found to promote the migration and invasion of breast cancer cells in vitro and enhance breast cancer metastasis in vivo. Mechanistically, we elucidated that AC073352.1 interacted with YBX1 and stabilized its protein expression. Knock down of YBX1 reduced breast cancer cell migration and invasion and could partially reverse the stimulative effects of AC073352.1 overexpressed on breast cancer metastasis. Moreover, AC073352.1 might be packaged into exosomes by binding to YBX1 in breast cancer cells resulting in angiogenesis. Collectively, our results demonstrated that AC073352.1 promoted breast cancer metastasis and angiogenesis via binding YBX1, and it could serve as a promising, novel biomarker for prognosis and a therapeutic target in breast cancer.
Project description:Breast cancer is the second leading cause of death in women worldwide, with triple-negative breast cancer (TNBC) having the worst prognosis. Although there are numerous studies on TNBC, there is no effective treatment for it, and it is still a major problem today. Studies on PIWI-interacting RNAs (piRNAs) are increasing and investigating the mechanism of piRNAs in the proliferation and metastasis of TNBC may lead to new potential treatment targets. Here, we identified a novel piRNA, piR-YBX1, which was downregulated in TNBC compared to matched normal breast tissue. Overexpression of piR-YBX1 significantly inhibited the proliferation, migration, invasion ability of TNBC cells both in vivo and in vitro. Mechanistically, piR-YBX1 could bind directly to mRNA of Y-box binding protein 1 (YBX1) and overexpression of piR-YBX1 downregulated YBX1 in both mRNA and protein levels, while the function of piR-YBX1 could be partly rescued by overexpression of YBX1. In addition, YBX1 could bind to RAF1 which is the key molecule in the MAPK signaling pathway, and overexpression of piR-YBX1 inhibited the p-MEK and p-ERK1/2, which can be reverted by YBX1. In conclusion, our findings discovered that the piR-YBX1/YBX1/MAPK axis suppresses the proliferation and metastasis of TNBC and therefore piR-YBX1 has the potential to be an effective therapeutic agent for breast cancer.
Project description:Breast cancer is the most common invasive cancer in women with the highest number of related deaths which is caused by distal metastasis. Recently, integrated analysis of gene expression profile suggested widespread gene dysregulation in various types of cancer. Research in the past decade has focused on long non?coding RNAs (lncRNAs), particularly in cell proliferation, tumor progression and metastasis. OPA?interacting protein 5 antisense transcript 1 (OIP5?AS1) is an evolutionarily conserved long non?coding RNA that has been linked to oncogenesis in multiple cancers. In breast cancer, dysregulation of OIP5?AS1 was reported but the precise role in cancer development and progression remains unclear. In the present study, using small interfering RNA (siRNA) targeting OIP5?AS1, it was shown that knockdown of OIP5?AS1 was associated with alteration of EMT markers and suppressed migration and invasion of breast cancer cells. Among the EMT?related transcription factors, ZEB1 and ZEB2 were significantly downregulated with OIP5?AS1 knockdown. Computational analysis and a dual?luciferase reporter system identified miR?340?5p was the target gene for OIP5?AS1. Further experiments verified the function of OIP5?AS1 in cell invasion was dependent on miR?340a?5p through regulating target gene ZEB2. In vivo study demonstrated that overexpressing OIP5?AS1 in breast cancer cells promoted lung metastasis in nude mice. The findings of the present study revealed the mechanism of OIP5?AS1 in breast cancer metastasis. Overall, our study may provide a potential therapeutic target for breast cancer metastasis.
Project description:The underlying mechanisms of long non-coding RNAs (lncRNA) participating in the progression of lung cancers are largely unknown. We found a novel lncRNA, PIK3CD antisense RNA 2 (PIK3CD-AS2), that contributes to lung adenocarcinoma (LUAD) progression. The expression characteristics of PIK3CD-AS2 in LUAD were analyzed using microarray expression profile, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets, and validated in 92 paired LUAD tissues by chromogenic in situ hybridization. Our data confirmed that PIK3CD-AS2 expression is a crucial regulator of LUAD progression and associated with shorter patient survival. In vitro studies showed that PIK3CD-AS2 increased cell growth and slowed apoptosis in p53wt cells but not in p53null cells. Mechanically, it is demonstrated that PIK3CD-AS2 bound to and maintained the stability of Y-box binding protein 1 (YBX1), a potent destabilizer of p53, by impeding its ubiquitination and degradation. Downexpression of YBX1 reversed PIK3CD-AS2-mediated inhibition of p53 signaling. Additionally, the therapeutic effect evaluation of a locked nuclear acid (LNA) specifically targeting PIK3CD-AS2 showed an anti-tumor activity in mice with A549 cells xenograft and p53 wild-type LUAD patient-derived tumor xenograft (PDTX) model. Clinically, the high expression of PIK3CD-AS2 showed a poor disease-free survival in p53 wild-type patients in TCGA database. Our findings suggest that PIK3CD-AS2 regulates LUAD progression and elucidate a new PIK3CD-AS2/YBX1/p53 signaling axis, providing a potential lncRNA-directed therapeutic strategy especially in p53 wild-type LUAD patients.
Project description:BackgroundLong non-coding RNA H19 was demonstrated to be significantly correlated with tumor metastasis. However, the specific functions of H19 in colorectal cancer (CRC) metastasis and the underlying mechanism are still largely unclear.MethodsUse public database to screen the potential lncRNA crucial for metastasis in colorectal cancer. The expression of H19 in clinical CRC specimens was detected by qRT-PCR. The effect of H19 on the metastasis of CRC cells was investigated by transwell, wound healing assays, CCK-8 assays and animal studies. The potential proteins binding to H19 were identified by LC-MS and verified by RNA immunoprecipitation (RIP). The expression of indicated RNA and proteins were measured by qRT-PCR or western blot.ResultsWe found the expression of lncRNA H19 was significantly upregulated in primary tumor and metastatic tissues, correlated with poor prognosis in CRC. Ectopic H19 expression promoted the metastasis of colorectal cancer cells in vitro and in vivo, and induced epithelial-to-mesenchymal transition (EMT). Mechanistically, H19 directly bound to hnRNPA2B1. Knockdown of hnRNPA2B1 attenuated the H19-induce migration and invasion in CRC cells. Furthermore, H19 stabilized and upregulated the expression of Raf-1 by facilitated the interaction between hnRNPA2B1 and Raf-1 mRNA, resulting in activation of Raf-ERK signaling.ConclusionsOur findings demonstrate the role of H19/hnRNPA2B1/EMT axis in regulation CRC metastasis, suggested H19 could be a potential biomarker to predict prognosis as well as a therapeutic strategy for CRC.
Project description:BackgroundTriple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer with highly invasive ability and metastatic nature to the lymph nodes. Long non-coding RNAs (lncRNAs) have been widely explored in cancer tumorigenesis and progression. However, their roles in TNBC lymph node metastasis remains rarely studied.MethodsThe expression of lncRNA highly upregulated in metastatic TNBC (HUMT) in cell lines and tissues was detected by quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). RNA immunoprecipitation (RIP) and RNA pulldown were used to verify the interaction between lncRNA and protein. Chromatin immunoprecipitation (CHIP) and dCas9-gRNA-guided chromatin immunoprecipitation (dCas9-CHIP) were conducted to identify the specific binding site of HUMT-YBX1 complex. Western blot was used to detect the downstream of HUMT.ResultsHUMT was significantly upregulated in lymph node invasive cells and predicted poorer clinical prognosis. Functional study indicated that HUMT promoted lymphangiogenesis and lymph node metastasis. Bioinformatic analysis and qRT-PCR showed that the high expression of HUMT was correlated with the hypomethylation status of its promoter region. Further, HUMT recruited Y-box binding protein 1 (YBX1) to form a novel transcription complex and activated the expression of forkhead box k1 (FOXK1), thus enhancing the expression of vascular endothelial growth factor C (VEGFC). The therapeutic value was further validated in patient-derived xenograft (PDX) models, and a combined marker panel exhibited a better prognostic value for TNBC in receiver operating characteristic (ROC) analysis.ConclusionsOur study identified a novel TNBC lymph node metastasis-associated lncRNA, which promoted TNBC progression and indicated a novel biomarker and potential therapeutic target for TNBC lymph node metastasis.
Project description:Long non-coding RNAs (lncRNAs) are emerging as key molecules in various cancers, yet their potential roles in the pathogenesis of breast cancer are not fully understood. Herein, using microarray analysis, we revealed that the lncRNA RACGAP1P, the pseudogene of Rac GTPase activating protein 1 (RACGAP1), was up-regulated in breast cancer tissues. Its high expression was confirmed in 25 pairs of breast cancer tissues and 8 breast cell lines by qRT-PCR. Subsequently, we found that RACGAP1P expression was positively correlated with lymph node metastasis, distant metastasis, TNM stage, and shorter survival time in 102 breast cancer patients. Then, in vitro and in vivo experiments were designed to investigate the biological function and regulatory mechanism of RACGAP1P in breast cancer cell lines. Overexpression of RACGAP1P in MDA-MB-231 and MCF7 breast cell lines increased their invasive ability and enhanced their mitochondrial fission. Conversely, inhibition of mitochondrial fission by Mdivi-1 could reduce the invasive ability of RACGAP1P-overexpressing cell lines. Furthermore, the promotion of mitochondrial fission by RACGAP1P depended on its competitive binding with miR-345-5p against its parental gene RACGAP1, leading to the activation of dynamin-related protein 1 (Drp1). In conclusion, lncRNA RACGAP1P promotes breast cancer invasion and metastasis via miR-345-5p/RACGAP1 pathway-mediated mitochondrial fission.
Project description:Hypoxia induces a vast array of long noncoding RNAs (lncRNA) in breast cancer cells, but their biological functions remain largely unknown. Here, we identified a hitherto uncharacterized hypoxia-induced lncRNA RAB11B-AS1 in breast cancer cells. RAB11B-AS1 is a natural lncRNA upregulated in human breast cancer and its expression is induced by hypoxia-inducible factor 2 (HIF2), but not HIF1, in response to hypoxia. RAB11B-AS1 enhanced the expression of angiogenic factors including VEGFA and ANGPTL4 in hypoxic breast cancer cells by increasing recruitment of RNA polymerase II. In line with increased angiogenic factors, conditioned media from RAB11B-AS1-overexpressing breast cancer cells promoted tube formation of human umbilical vein endothelial cells in vitro. Gain- and loss-of-function studies revealed that RAB11B-AS1 increased breast cancer cell migration and invasion in vitro and promoted tumor angiogenesis and breast cancer distant metastasis without affecting primary tumor growth in mice. Taken together, these findings uncover a fundamental mechanism of hypoxia-induced tumor angiogenesis and breast cancer metastasis. SIGNIFICANCE: This study reveals the molecular mechanism by which the lncRNA RAB11B-AS1 regulates hypoxia-induced angiogenesis and breast cancer metastasis, and provides new insights into the functional interaction between a lncRNA and tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/5/964/F1.large.jpg.
Project description:Hepatocellular carcinoma (HCC) is the most prevalent subtype of liver cancer, and it is characterized by high rate of metastasis and recurrence. Recent studies have boosted our understanding that Gankyrin contributes to both of these pathological properties, but the mechanisms underlying its aberrant regulation are poorly understood. Recently, many long noncoding RNAs (lncRNAs) have been reported to be involved in regulating the expression of oncogenes and anti-oncogenes through various mechanisms. Here, using transcriptome microarray analysis, we identified a long intergenic noncoding RNA termed Linc-GALH that was highly expressed and concordance with Gankyrin expression in HCC. In addition, we revealed that Linc-GALH was an independent unfavorable prognostic indicator for HCC, followed functional experiments showed that Linc-GALH promoted HCC cells migration and invasion in vitro, and enhanced lung metastasis ability of HCC cells in vivo. Mechanistically, we found that Linc-GALH could regulate the expression of Gankyrin through controlling the methylation status of Gankyrin by adjusting the ubiquitination status of DNMT1 in HCC. Collectively, our results demonstrated the role and functional mechanism of Linc-GALH in HCC, and indicated that Linc-GALH may act as a prognostic biomarker and potential therapeutic target for HCC.
Project description:Aging is accompanied by many physiological changes. These changes can progressively lead to many types of cardiovascular diseases. During this process blood vessels lose their ability to maintain vascular homeostasis, ultimately resulting in hypertension, stroke, or myocardial infarction. Increase in DNA damage is one of the hallmarks of aging and can be repaired by the DNA signaling and repair system. In our study we show that long non-coding RNA Aerrie (linc01013) contributes to the DNA signaling and repair mechanism. Silencing of Aerrie in endothelial cells impairs angiogenesis, migration, and barrier function. Aerrie associates with YBX1 and together they act as important factors in DNA damage signaling and repair. This study identifies Aerrie as a novel factor in genomic stability and as a binding partner of YBX1 in responding to DNA damage.
Project description:The occurrence of distant tumor metastases is a major barrier in non-small cell lung cancer (NSCLC) therapy, and seriously affects clinical treatment and patient prognosis. Recently, long non-coding RNAs (lncRNAs) have been demonstrated to be crucial regulators of metastasis in lung cancer. The aim of this study was to reveal the underlying mechanisms of a novel lncRNA LNC CRYBG3 in regulating NSCLC metastasis. Experimental results showed that LNC CRYBG3 was upregulated in NSCLC cells compared with normal tissue cells, and its level was involved in these cells' metastatic ability. Exogenously overexpressed LNC CRYBG3 increased the metastatic ability and the protein expression level of the metastasis-associated proteins Snail and Vimentin in low metastatic lung cancer HCC827 cell line. In addition, LNC CRYBG3 contributed to HCC827 cell metastasis in vivo. Mechanistically, LNC CRYBG3 could directly combine with eEF1A1 and promote it to move into the nucleus to enhance the transcription of MDM2. Overexpressed MDM2 combined with MDM2 binding protein (MTBP) to reduce the binding of MTBP with ACTN4 and consequently increased cell migration mediated by ACTN4. In conclusion, the LNC CRYBG3/eEF1A1/MDM2/MTBP axis is a novel signaling pathway regulating tumor metastasis and may be a potential therapeutic target for NSCLC treatment.