Project description:The ongoing COVID-19 pandemic and its unprecedented global societal and economic disruptive impact highlight the urgent need for safe and effective vaccines. Taking substantial advantages of versatility and rapid development, two mRNA vaccines against COVID-19 have completed late-stage clinical assessment at an unprecedented speed and reported positive results. In this review, we outline keynotes in mRNA vaccine development, discuss recently published data on COVID-19 mRNA vaccine candidates, focusing on those in clinical trials and analyze future potential challenges.
Project description:The advent of mRNA vaccines represents a significant advance in the field of vaccinology. While several vaccine approaches (mRNA, DNA, recombinant protein, and viral-vectored vaccines) had been investigated at the start of the COVID-19 pandemic, mRNA vaccines quickly gained popularity due to superior immunogenicity at a low dose, strong safety/tolerability profiles, and the possibility of rapid vaccine mass manufacturing and deployment to rural regions. In addition to inducing protective neutralizing antibody responses, mRNA vaccines can also elicit high-magnitude cytotoxic T-cell responses comparable to natural viral infections; thereby, drawing significant interest from cancer immunotherapy experts. This mini-review will highlight key developmental milestones and lessons we have learned from mRNA vaccines during the COVID-19 pandemic, with a specific emphasis on clinical trial data gathered so far for mRNA vaccines against melanoma and other forms of cancer.
Project description:mRNA vaccines have been increasingly recognized as a powerful vaccine platform since the FDA approval of two COVID-19 mRNA vaccines, which demonstrated outstanding prevention efficacy as well as great safety profile. Notably, nucleoside modification and lipid nanoparticle-facilitated delivery has greatly improved the immunogenicity, stability, and translation efficiency of mRNA molecule. Here we review the recent progress in mRNA vaccine development, including nucleoside modification, in vitro synthesis and product purification, and lipid nanoparticle vectors for in vivo delivery and efficient translation. We also briefly introduce the clinical application of mRNA vaccine in preventing infectious diseases and treating inflammatory diseases including cancer.
Project description:To date, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has determined 399,600,607 cases and 5,757,562 deaths worldwide. COVID-19 is a serious threat to human health globally. The World Health Organization (WHO) has declared COVID-19 pandemic a major public health emergency. Vaccination is the most effective and economical intervention for controlling the spread of epidemics, and consequently saving lives and protecting the health of the population. Various techniques have been employed in the development of COVID-19 vaccines. Among these, the COVID-19 messenger RNA (mRNA) vaccine has been drawing increasing attention owing to its great application prospects and advantages, which include short development cycle, easy industrialization, simple production process, flexibility to respond to new variants, and the capacity to induce better immune response. This review summarizes current knowledge on the structural characteristics, antigen design strategies, delivery systems, industrialization potential, quality control, latest clinical trials and real-world data of COVID-19 mRNA vaccines as well as mRNA technology. Current challenges and future directions in the development of preventive mRNA vaccines for major infectious diseases are also discussed.
Project description:The current situation of Coronavirus Disease 2019 (COVID-19) worldwide is still very severe. Presently, many breakthroughs have been accomplished in the research and development of drugs for the treatment of COVID-19, especially vaccines; however, some of the so-called COVID-19-specific drugs highlighted in the early stage failed to achieve the expected curative effect. There is no antiviral therapy available, by stimulating protective immunity vaccine is the best choice for the future management of infection. Therefore, we aimed to identify the latest developments in the research and development of these drugs and vaccines and provide a reference for the prevention and treatment of COVID-19.
Project description:Given the interest in the COVID mRNA vaccines, we sought to investigate how the RNA modification N1-methylpseudouridine (and its related modification, pseudouridine) is read by ribosomes and reverse transcriptases. By looking at reverse transcriptase data, we can gain information on how the modification affects duplex stability, which may have important consequences for the tRNA-mRNA interactions found in the ribosome.
Project description:The COVID mRNA vaccines utilize the modified nucleobase N1-methylpseudouridine, in place of canonical uridine, to improve immunogenicity and protein yield. However, relatively few studies have investigated the effect of modified nucleobases on the fidelity of protein translation. Given the interest in the COVID mRNA vaccines, we sought to investigate how N1-methylpseudouridine (and the related modification pseudouridine) is read by ribosomes.
Project description:Cancer is a leading cause of death worldwide, accounting for millions of deaths every year. Immunotherapy is a groundbreaking approach for treating cancer through harnessing the power of the immune system to target and eliminate cancer cells. Cancer vaccines, one immunotherapy approach, have shown promise in preclinical settings, but researchers have struggled to reproduce these results in clinical settings. However, with the maturity of mRNA technology and its success in tackling the recent coronavirus disease 2019 (COVID-19) pandemic, cancer vaccines are expected to regain attention. In this review, we focused on the recent progress made in mRNA-based cancer vaccines over the past five years. The mechanism of action of mRNA vaccines, advancements in neoantigen discovery, adjuvant identification, and delivery materials are summarized and reviewed. In addition, we also provide a detailed overview of current clinical trials involving mRNA cancer vaccines. Lastly, we offer an insight into future considerations for the application of mRNA vaccines in cancer immunotherapy. This review will help researchers to understand the advances in mRNA-based cancer vaccines and explore new dimensions for potential immunotherapy approaches.
Project description:The search for effective vaccines to stop the COVID-19 pandemic has led to an unprecedented amount of global scientific production and activity. This study aimed to analyze global scientific production on the different vaccine types (mRNA and conventional) that were validated for COVID-19 during the years 2020-2021. The scientific production generated on COVID-19 vaccines during the period 2020-2021 totaled the enormous amount of 20,459 studies published. New mRNA vaccines clearly showed higher production levels than conventional vaccines (viral and inactivated vectors), with 786 and 350 studies, respectively. The USA is the undisputed leader in the global production on COVID-19 vaccines, with Israel and Italy also playing an important role. Among the journals publishing works in this field, the New England Journal of Medicine, the British Medical Journal, and Vaccines stand out from the rest as the most important. The keyword 'immunogenicity' and its derivatives have been more researched for the new mRNA vaccines, while thrombosis has been more studied for conventional vaccines. The massive scientific production generated on COVID-19 vaccines in only two years has shown the enormous gravity of the pandemic and the extreme urgency to find a solution. This high scientific production and the main keywords found for the mRNA vaccines indicate the great potential that these vaccines have against COVID-19 and future infectious diseases. Moreover, this study provides valuable information for guiding future research lines and promoting international collaboration for an effective solution.