Project description:Nicotine use can lead to dependence through complex processes that are regulated by both its rewarding and aversive effects. Recent studies show that aversive nicotine doses activate excitatory inputs to the interpeduncular nucleus (IPN) from the medial habenula (MHb), but the downstream targets of the IPN that mediate aversion are unknown. Here we show that IPN projections to the laterodorsal tegmentum (LDTg) are GABAergic using optogenetics in tissue slices from mouse brain. Selective stimulation of these IPN axon terminals in LDTg in vivo elicits avoidance behavior, suggesting that these projections contribute to aversion. Nicotine modulates these synapses in a concentration-dependent manner, with strong enhancement only seen at higher concentrations that elicit aversive responses in behavioral tests. Optogenetic inhibition of the IPN-LDTg connection blocks nicotine conditioned place aversion, suggesting that the IPN-LDTg connection is a critical part of the circuitry that mediates the aversive effects of nicotine.
Project description:The laterodorsal tegmentum (LDT) is associated with reward considering that it modulates VTA neuronal activity, but recent anatomical evidence shows that the LDT also directly projects to nucleus accumbens (NAc). We show that the majority of LDT-NAc inputs are cholinergic, but there is also GABAergic and glutamatergic innervation; activation of LDT induces a predominantly excitatory response in the NAc. Non-selective optogenetic activation of LDT-NAc projections in rats enhances motivational drive and shifts preference to an otherwise equal reward; whereas inhibition of these projections induces the opposite. Activation of these projections also induces robust place preference. In mice, specific activation of LDT-NAc cholinergic inputs (but not glutamatergic or GABAergic) is sufficient to shift preference, increase motivation, and drive positive reinforcement in different behavioral paradigms. These results provide evidence that LDT-NAc projections play an important role in motivated behaviors and positive reinforcement, and that distinct neuronal populations differentially contribute for these behaviors.
Project description:The locus coeruleus noradrenergic (LC-NE) system is one of the first systems engaged following a stressful event. While numerous groups have demonstrated that LC-NE neurons are activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated. Using a combination of in vivo chemogenetics, optogenetics, and retrograde tracing, we determine that increased tonic activity of the LC-NE system is necessary and sufficient for stress-induced anxiety and aversion. Selective inhibition of LC-NE neurons during stress prevents subsequent anxiety-like behavior. Exogenously increasing tonic, but not phasic, activity of LC-NE neurons is alone sufficient for anxiety-like and aversive behavior. Furthermore, endogenous corticotropin-releasing hormone(+) (CRH(+)) LC inputs from the amygdala increase tonic LC activity, inducing anxiety-like behaviors. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders.
Project description:All organisms possess innate behavioural and physiological programmes that ensure survival. In order to have maximum adaptive benefit, these programmes must be sufficiently flexible to account for changes in the environment. Here we show that hypothalamic CRH neurons orchestrate an environmentally flexible repertoire of behaviours that emerge after acute stress in mice. Optical silencing of CRH neurons disrupts the organization of individual behaviours after acute stress. These behavioural patterns shift according to the environment after stress, but this environmental sensitivity is blunted by activation of PVN CRH neurons. These findings provide evidence that PVN CRH cells are part of a previously unexplored circuit that matches precise behavioural patterns to environmental context following stress. Overactivity in this network in the absence of stress may contribute to environmental ambivalence, resulting in context-inappropriate behavioural strategies.
Project description:The laterodorsal tegmentum (LDT) is a brain structure involved in distinct behaviors including arousal, reward, and innate fear. How environmental stimuli and top-down control from high-order sensory and limbic cortical areas converge and coordinate in this region to modulate diverse behavioral outputs remains unclear. Using a modified rabies virus, we applied monosynaptic retrograde tracing to the whole brain to examine the LDT cell type specific upstream nuclei. The LDT received very strong midbrain and hindbrain afferents and moderate cortical and hypothalamic innervation but weak connections to the thalamus. The main projection neurons from cortical areas were restricted to the limbic lobe, including the ventral orbital cortex (VO), prelimbic, and cingulate cortices. Although different cell populations received qualitatively similar inputs, primarily via afferents from the periaqueductal gray area, superior colliculus, and the LDT itself, parvalbumin-positive (PV+) GABAergic cells received preferential projections from local LDT neurons. With regard to the different subtypes of GABAergic cells, a considerable number of nuclei, including those of the ventral tegmental area, central amygdaloid nucleus, and VO, made significantly greater inputs to somatostatin-positive cells than to PV+ cells. Diverse inputs to the LDT on a system-wide level were revealed.
Project description:C1 neurons, located in the medulla oblongata, mediate adaptive autonomic responses to physical stressors (for example, hypotension, hemorrhage and presence of lipopolysaccharides). We describe here a powerful anti-inflammatory effect of restraint stress, mediated by C1 neurons: protection against renal ischemia-reperfusion injury. Restraint stress or optogenetic C1 neuron (C1) stimulation (10 min) protected mice from ischemia-reperfusion injury (IRI). The protection was reproduced by injecting splenic T cells that had been preincubated with noradrenaline or splenocytes harvested from stressed mice. Stress-induced IRI protection was absent in Chrna7 knockout (a7nAChR-/-) mice and greatly reduced by destroying or transiently inhibiting C1. The protection conferred by C1 stimulation was eliminated by splenectomy, ganglionic-blocker administration or ?2-adrenergic receptor blockade. Although C1 stimulation elevated plasma corticosterone and increased both vagal and sympathetic nerve activity, C1-mediated IRI protection persisted after subdiaphragmatic vagotomy or corticosterone receptor blockade. Overall, acute stress attenuated IRI by activating a cholinergic, predominantly sympathetic, anti-inflammatory pathway. C1s were necessary and sufficient to mediate this effect.
Project description:Rett syndrome (RTT), a postnatal neurodevelopmental disorder, is caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Children with RTT display cognitive and motor abnormalities as well as autistic features. We studied mice bearing a truncated Mecp2 allele (Mecp2(308/Y) mice) and found evidence of increased anxiety-like behavior and an abnormal stress response as evidenced by elevated serum corticosterone levels. We found increased corticotropin-releasing hormone (Crh) gene expression in the paraventricular nucleus of the hypothalamus, the central amygdala, and the bed nucleus of the stria terminalis. Finally, we discovered that MeCP2 binds the Crh promoter, which is enriched for methylated CpG dinucleotides. In contrast, the MeCP2(308) protein was not detected at the Crh promoter. This study identifies Crh as a target of MeCP2 and implicates Crh overexpression in the development of specific features of the Mecp2(308/Y) mouse, thereby providing opportunities for clinical investigation and therapeutic intervention in RTT.
Project description:Genomic duplications spanning Xq28 are associated with a spectrum of phenotypes, including anxiety and autism. The minimal region shared among affected individuals includes MECP2 and IRAK1, although it is unclear which gene when overexpressed causes anxiety and social behavior deficits. We report that doubling MECP2 levels causes heightened anxiety and autism-like features in mice and alters the expression of genes that influence anxiety and social behavior, such as Crh and Oprm1. To test the hypothesis that alterations in these two genes contribute to heightened anxiety and social behavior deficits, we analyzed MECP2 duplication mice (MECP2-TG1) that have reduced Crh and Oprm1 expression. In MECP2-TG1 animals, reducing the levels of Crh or its receptor, Crhr1, suppressed anxiety-like behavior; in contrast, reducing Oprm1 expression improved abnormal social behavior. These data indicate that increased MeCP2 levels affect molecular pathways underlying anxiety and social behavior and provide new insight into potential therapies for MECP2-related disorders.
Project description:Decreased pleasure-seeking (anhedonia) forms a core symptom of depression. Stressful experiences precipitate depression and disrupt reward-seeking, but it remains unclear how stress causes anhedonia. We recorded simultaneous neural activity across limbic brain areas as mice underwent stress and discovered a stress-induced 4 Hz oscillation in the nucleus accumbens (NAc) that predicts the degree of subsequent blunted reward-seeking. Surprisingly, while previous studies on blunted reward-seeking focused on dopamine (DA) transmission from the ventral tegmental area (VTA) to the NAc, we found that VTA GABA, but not DA, neurons mediate stress-induced blunted reward-seeking. Inhibiting VTA GABA neurons disrupts stress-induced NAc oscillations and rescues reward-seeking. By contrast, mimicking this signature of stress by stimulating NAc-projecting VTA GABA neurons at 4 Hz reproduces both oscillations and blunted reward-seeking. Finally, we find that stress disrupts VTA GABA, but not DA, neural encoding of reward anticipation. Thus, stress elicits VTA-NAc GABAergic activity that induces VTA GABA mediated blunted reward-seeking.
Project description:Corticotropin-releasing factor (CRF), encoded by the CRH gene, is a key integrator of stress responses, and, as such, CRH gene variation may contribute to individual differences in susceptibility to stress-related pathology. In rhesus macaques, a single nucleotide polymorphism (SNP) is found within the CRH promoter (-248C--> T). Here, we assessed whether this variant influenced stress responding and, because increased CRF system activity drives alcohol drinking in rodents, we examined whether it predicted voluntary alcohol consumption as a function of prior stress exposure. Using a hypothalamic nuclear extract, we showed that the -248 T allele resulted in increased DNA protein interactions relative to the C allele. In vitro, the T allele resulted in CRH promoter activity that was higher following both stimulation with forskolin and treatment with dexamethasone. Endocrine and behavioral responses to social separation stress (release of ACTH and cortisol, and suppression of environmental exploration, respectively) were higher among carriers of the T allele, particularly among those exposed to early adversity in the form of peer rearing. We also found that T allele carriers with a history of early life adversity consumed more alcohol in a limited-access paradigm. Our data suggest that CRH promoter variation that confers increased stress reactivity increases the risk for alcohol use disorders in stress-exposed individuals.