Unknown

Dataset Information

0

Miro1-dependent mitochondrial dynamics in parvalbumin interneurons.


ABSTRACT: The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30-80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.

SUBMITTER: Kontou G 

PROVIDER: S-EPMC8294849 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6407626 | biostudies-literature
| S-EPMC8810709 | biostudies-literature
| S-EPMC5384212 | biostudies-literature
| S-EPMC5509892 | biostudies-other
| S-EPMC7317294 | biostudies-literature
| S-EPMC8026352 | biostudies-literature
| S-EPMC4250102 | biostudies-literature
| S-EPMC6208788 | biostudies-literature
| S-EPMC6936502 | biostudies-literature
| S-EPMC8631347 | biostudies-literature