Unknown

Dataset Information

0

Ultrastructural analysis of breast cancer patient-derived organoids.


ABSTRACT:

Background

Breast cancer Patient Derived Organoids (PDO) have been demonstrated to be a reliable model to study cancer that promised to replace and reduce the use of animals in pre-clinical research. They displayed concordance with the tissue of origin, resuming its heterogenicity and representing a good platform to develop approaches of personalized medicines. Although obtain PDOs from mammary tumour, was a very challenging process, several ongoing studies evaluated them as a platform to study efficacy, sensitivity and specificity of new drugs and exploited them in personalized medicine. Despite tissue organization represented a crucial point to evaluate in a 3-dimensional model, since it could influence drug penetration, morphology of breast cancer PDOs has not been analysed yet. Here, we proposed a complete ultrastructural analysis of breast PDOs obtained from tumour and healthy tissues to evaluate how typical structures observed in mammary gland were resumed in this model.

Methods

81 samples of mammary tissue (healthy or tumour) resulting from surgical resections have been processed to obtain PDO. The resulting PDOs embedded in matrigel drop have been processed for transmission electron microscopy and analysed. A comparison between ones from healthy and ones from cancerous tissue has been performed and PDOs derived from tumour tissue have been stratified according to their histological and molecular subtype.

Result

The morphological analysis performed on 81 PDO revealed an organized structure rich in Golgi, secretion granules and mitochondria, which was typical of cells with a strong secretory activity and active metabolism. The presence of desmosomes, inter and intracellular lumens and of microvilli and interdigitations signified a precise tissue-organization. Each PDO has been classified based on whether or not it possessed (i) peripheral ridges in mitochondria, (ii) intracellular lumens, (iii) intercellular lumens, (iv) micro-vesicles, (v) open desmosomes, (vi) cell debris, (vii) polylobed nuclei, (viii) lysosomes and (ix) secretion granules, in order to identify features coupled with the cancerous state or with a specific histological or molecular subtype.

Conclusion

Here we have demonstrated the suitability of breast cancer PDO as 3-dimensional model of mammary tissue. Besides, some structural features characterizing cancerous PDO have been observed, identifying the presence of distinctive traits.

SUBMITTER: Signati L 

PROVIDER: S-EPMC8353820 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10996455 | biostudies-literature
| S-EPMC8596108 | biostudies-literature
2022-01-09 | GSE186747 | GEO
| S-EPMC9988482 | biostudies-literature
| S-EPMC7415927 | biostudies-literature
| S-EPMC6008438 | biostudies-literature
| S-EPMC8012903 | biostudies-literature
| S-EPMC9135475 | biostudies-literature
| S-EPMC8395494 | biostudies-literature
| S-EPMC9270001 | biostudies-literature