Ontology highlight
ABSTRACT: Background and aims
The development and progression of hepatocellular carcinoma (HCC) is dependent on its local microenvironment. Tumor-associated macrophages (TAMs) are deemed a key factor for the tumor microenvironment and attribute to contribute to tumor aggressiveness. However, the detailed mechanism underlying the pro-metastatic effect of TAMs on HCC remains undefined.Approach and results
The present study proved that TAMs were enriched in HCC. TAMs were characterized by an M2-polarized phenotype and accelerated the migratory potential of HCC cells in vitro and in vivo. Furthermore, we found that M2-derived exosomes induced TAM-mediated pro-migratory activity. With the use of mass spectrometry, we identified that integrin, αM β2 (CD11b/CD18), was notably specific and efficient in M2 macrophage-derived exosomes (M2 exos). Blocking either CD11b and/or CD18 elicited a significant decrease in M2 exos-mediated HCC cell metastasis. Mechanistically, M2 exos mediated an intercellular transfer of the CD11b/CD18, activating the matrix metalloproteinase-9 signaling pathway in recipient HCC cells to support tumor migration.Conclusions
Collectively, the exosome-mediated transfer of functional CD11b/CD18 protein from TAMs to tumor cells may have the potency to boost the migratory potential of HCC cells, thus providing insights into the mechanism of tumor metastasis.
SUBMITTER: Wu J
PROVIDER: S-EPMC8360085 | biostudies-literature |
REPOSITORIES: biostudies-literature