Structure and Reactivity of N-Heterocyclic Alkynyl Hypervalent Iodine Reagents.
Ontology highlight
ABSTRACT: Ethynylbenziodoxol(on)e (EBX) cyclic hypervalent iodine reagents have become popular reagents for the alkynylation of radicals and nucleophiles, but only offer limited possibilities for further structure and reactivity fine-tuning. Herein, the synthesis of new N-heterocyclic hypervalent iodine reagents with increased structural flexibility based on amide, amidine and sulfoximine scaffolds is reported. Solid-state structures of the reagents are reported and the analysis of the I-Calkyne bond lengths allowed assessing the trans-effect of the different substituents. Molecular electrostatic potential (MEP) maps of the reagents, derived from DFT computations, revealed less pronounced σ-hole regions for sulfonamide-based compounds. Most reagents reacted well in the alkynylation of β-ketoesters. The alkynylation of thiols afforded more variable yields, with compounds with a stronger σ-hole reacting better. In metal-mediated transformations, the N-heterocyclic hypervalent iodine reagents gave inferior results when compared to the O-based EBX reagents.
SUBMITTER: Le Du E
PROVIDER: S-EPMC8361724 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA