Unknown

Dataset Information

0

Reconstruction of the Diaminopimelic Acid Pathway to Promote L-lysine Production in Corynebacterium glutamicum.


ABSTRACT: The dehydrogenase pathway and the succinylase pathway are involved in the synthesis of L-lysine in Corynebacterium glutamicum. Despite the low contribution rate to L-lysine production, the dehydrogenase pathway is favorable for its simple steps and potential to increase the production of L-lysine. The effect of ammonium (NH4+) concentration on L-lysine biosynthesis was investigated, and the results indicated that the biosynthesis of L-lysine can be promoted in a high NH4+ environment. In order to reduce the requirement of NH4+, the nitrogen source regulatory protein AmtR was knocked out, resulting in an 8.5% increase in L-lysine production (i.e., 52.3 ± 4.31 g/L). Subsequently, the dehydrogenase pathway was upregulated by blocking or weakening the tetrahydrodipicolinate succinylase (DapD)-coding gene dapD and overexpressing the ddh gene to further enhance L-lysine biosynthesis. The final strain XQ-5-W4 could produce 189 ± 8.7 g/L L-lysine with the maximum specific rate (qLys,max.) of 0.35 ± 0.05 g/(g·h) in a 5-L jar fermenter. The L-lysine titer and qLys,max achieved in this study is about 25.2% and 59.1% higher than that of the original strain without enhancement of dehydrogenase pathway, respectively. The results indicated that the dehydrogenase pathway could serve as a breakthrough point to reconstruct the diaminopimelic acid (DAP) pathway and promote L-lysine production.

SUBMITTER: Liu N 

PROVIDER: S-EPMC8396482 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2016-03-30 | GSE79690 | GEO
2016-03-30 | E-GEOD-79690 | biostudies-arrayexpress
| S-EPMC2976228 | biostudies-literature
| S-EPMC5940623 | biostudies-literature
| S-EPMC6035423 | biostudies-literature
| S-EPMC7720191 | biostudies-literature
| S-EPMC6218589 | biostudies-literature
| S-EPMC8336102 | biostudies-literature
| S-EPMC2620725 | biostudies-literature
| S-EPMC3911046 | biostudies-literature