Ontology highlight
ABSTRACT: Background
The development of a successful COVID-19 control strategy requires a thorough understanding of the trends in geographic and demographic distributions of disease burden. In terms of the estimation of the population prevalence, this includes the crucial process of unravelling the number of patients who remain undiagnosed.Objective
This study estimates the period prevalence of COVID-19 between March 1, 2020, and November 30, 2020, and the proportion of the infected population that remained undiagnosed in the Canadian provinces of Quebec, Ontario, Alberta, and British Columbia.Methods
A model-based mathematical framework based on a disease progression and transmission model was developed to estimate the historical prevalence of COVID-19 using provincial-level statistics reporting seroprevalence, diagnoses, and deaths resulting from COVID-19. The framework was applied to three different age cohorts (< 30; 30-69; and ≥70 years) in each of the provinces studied.Results
The estimates of COVID-19 period prevalence between March 1, 2020, and November 30, 2020, were 4.73% (95% CI 4.42%-4.99%) for Quebec, 2.88% (95% CI 2.75%-3.02%) for Ontario, 3.27% (95% CI 2.72%-3.70%) for Alberta, and 2.95% (95% CI 2.77%-3.15%) for British Columbia. Among the cohorts considered in this study, the estimated total number of infections ranged from 2-fold the number of diagnoses (among Quebecers, aged ≥70 years: 26,476/53,549, 49.44%) to 6-fold the number of diagnoses (among British Columbians aged ≥70 years: 3108/18,147, 17.12%).Conclusions
Our estimates indicate that a high proportion of the population infected between March 1 and November 30, 2020, remained undiagnosed. Knowledge of COVID-19 period prevalence and the undiagnosed population can provide vital evidence that policy makers can consider when planning COVID-19 control interventions and vaccination programs.
SUBMITTER: Hamadeh A
PROVIDER: S-EPMC8432517 | biostudies-literature |
REPOSITORIES: biostudies-literature