Project description:The de novo design of globular beta sheet proteins remains largely an unsolved problem. It is unclear whether most designs are failing because the designed sequences do not have favorable energies in the target conformations or whether more emphasis should be placed on negative design, that is, explicitly identifying sequences that have poor energies when adopting undesired conformations. We tested whether we could redesign the sequence of a naturally occurring beta sheet protein, tenascin, with a design algorithm that does not include explicit negative design. Denaturation experiments indicate that the designs are significantly more stable than the wild-type protein and the crystal structure of one design closely matches the design model. These results suggest that extensive negative design is not required to create well-folded beta sandwich proteins. However, it is important to note that negative design elements may be encoded in the conformation of the protein backbone which was preserved from the wild-type protein.
Project description:β-sheet proteins carry out critical functions in biology, and hence are attractive scaffolds for computational protein design. Despite this potential, de novo design of all-β-sheet proteins from first principles lags far behind the design of all-α or mixed-αβ domains owing to their non-local nature and the tendency of exposed β-strand edges to aggregate. Through study of loops connecting unpaired β-strands (β-arches), we have identified a series of structural relationships between loop geometry, side chain directionality and β-strand length that arise from hydrogen bonding and packing constraints on regular β-sheet structures. We use these rules to de novo design jellyroll structures with double-stranded β-helices formed by eight antiparallel β-strands. The nuclear magnetic resonance structure of a hyperthermostable design closely matched the computational model, demonstrating accurate control over the β-sheet structure and loop geometry. Our results open the door to the design of a broad range of non-local β-sheet protein structures.
Project description:Naturally occurring, pharmacologically active peptides constrained with covalent crosslinks generally have shapes that have evolved to fit precisely into binding pockets on their targets. Such peptides can have excellent pharmaceutical properties, combining the stability and tissue penetration of small-molecule drugs with the specificity of much larger protein therapeutics. The ability to design constrained peptides with precisely specified tertiary structures would enable the design of shape-complementary inhibitors of arbitrary targets. Here we describe the development of computational methods for accurate de novo design of conformationally restricted peptides, and the use of these methods to design 18-47 residue, disulfide-crosslinked peptides, a subset of which are heterochiral and/or N-C backbone-cyclized. Both genetically encodable and non-canonical peptides are exceptionally stable to thermal and chemical denaturation, and 12 experimentally determined X-ray and NMR structures are nearly identical to the computational design models. The computational design methods and stable scaffolds presented here provide the basis for development of a new generation of peptide-based drugs.
Project description:Transmembrane β-barrel proteins (TMBs) are of great interest for single-molecule analytical technologies because they can spontaneously fold and insert into membranes and form stable pores, but the range of pore properties that can be achieved by repurposing natural TMBs is limited. We leverage the power of de novo computational design coupled with a "hypothesis, design, and test" approach to determine TMB design principles, notably, the importance of negative design to slow β-sheet assembly. We design new eight-stranded TMBs, with no homology to known TMBs, that insert and fold reversibly into synthetic lipid membranes and have nuclear magnetic resonance and x-ray crystal structures very similar to the computational models. These advances should enable the custom design of pores for a wide range of applications.
Project description:This work describes the de-novo design of peptides that inhibit a broad range of plant pathogens. Four structurally different groups of peptides were developed that differ in size and position of their charged and hydrophobic clusters and were assayed for their ability to inhibit bacterial growth and fungal spore germination. Several peptides are highly active at concentrations between 0,1 and 1 µg/ml against plant pathogenic bacteria, such as Pseudomonas syringae, Pectobacterium carotovorum, and Xanthomonas vesicatoria. Importantly, no hemolytic activity could be detected for these peptides at concentrations up to 200 µg/ml. Moreover, the peptides are also active after spraying on the plant surface demonstrating a possible way of application. In sum, our designed peptides represent new antimicrobial agents and with the increasing demand for antimicrobial compounds for production of "healthy" food, these peptides might serve as templates for novel antibacterial and antifungal agents.
Project description:Fusion of biological membranes is mediated by distinct integral membrane proteins, e.g., soluble N-ethylmaleimide-sensitive factor attachment protein receptors and viral fusion proteins. Previous work has indicated that the transmembrane segments (TMSs) of such integral membrane proteins play an important role in fusion. Furthermore, peptide mimics of the transmembrane part can drive the fusion of liposomes, and evidence had been obtained that fusogenicity depends on their conformational flexibility. To test this hypothesis, we present a series of unnatural TMSs that were designed de novo based on the structural properties of hydrophobic residues. We find that the fusogenicity of these peptides depends on the ratio of alpha-helix-promoting Leu and beta-sheet-promoting Val residues and is enhanced by helix-destabilizing Pro and Gly residues within their hydrophobic cores. The ability of these peptides to refold from an alpha-helical state to a beta-sheet conformation and backwards was determined under different conditions. Membrane fusogenic peptides with mixed Leu/Val sequences tend to switch more readily between different conformations than a nonfusogenic peptide with an oligo-Leu core. We propose that structural flexibility of these TMSs is a prerequisite of fusogenicity.
Project description:Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding. Here, we explore the de novo design of small beta barrel topologies using both Rosetta energy-based methods and deep learning approaches to design four small beta barrel folds: Src homology 3 (SH3) and oligonucleotide/oligosaccharide-binding (OB) topologies found in nature and five and six up-and-down-stranded barrels rarely if ever seen in nature. Both approaches yielded successful designs with high thermal stability and experimentally determined structures with less than 2.4 Å rmsd from the designed models. Using deep learning for backbone generation and Rosetta for sequence design yielded higher design success rates and increased structural diversity than Rosetta alone. The ability to design a large and structurally diverse set of small beta barrel proteins greatly increases the protein shape space available for designing binders to protein targets of interest.
Project description:Design of complex alpha-beta protein topologies poses a challenge because of the large number of alternative packing arrangements. A similar challenge presumably limited the emergence of large and complex protein topologies in evolution. Here, we demonstrate that protein topologies with six and seven-stranded beta sheets can be designed by insertion of one de novo designed beta sheet containing protein into another such that the two beta sheets are merged to form a single extended sheet, followed by amino acid sequence optimization at the newly formed strand-strand, strand-helix, and helix-helix interfaces. Crystal structures of two such designs closely match the computational design models. Searches for similar structures in the SCOP protein domain database yield only weak matches with different beta sheet connectivities. A similar beta sheet fusion mechanism may have contributed to the emergence of complex beta sheets during natural protein evolution.
Project description:Self-association is a common phenomenon in biology and one that can have positive and negative impacts, from the construction of the architectural cytoskeleton of cells to the formation of fibrils in amyloid diseases. Understanding the nature and mechanisms of self-association is important for modulating these systems and in creating biologically-inspired materials. Here, we present a two-stage de novo peptide design framework that can generate novel self-associating peptide systems. The first stage uses a simulated multimeric template structure as input into the optimization-based Sequence Selection to generate low potential energy sequences. The second stage is a computational validation procedure that calculates Fold Specificity and/or Approximate Association Affinity (K*association) based on metrics that we have devised for multimeric systems. This framework was applied to the design of self-associating tripeptides using the known self-associating tripeptide, Ac-IVD, as a structural template. Six computationally predicted tripeptides (Ac-LVE, Ac-YYD, Ac-LLE, Ac-YLD, Ac-MYD, Ac-VIE) were chosen for experimental validation in order to illustrate the self-association outcomes predicted by the three metrics. Self-association and electron microscopy studies revealed that Ac-LLE formed bead-like microstructures, Ac-LVE and Ac-YYD formed fibrillar aggregates, Ac-VIE and Ac-MYD formed hydrogels, and Ac-YLD crystallized under ambient conditions. An X-ray crystallographic study was carried out on a single crystal of Ac-YLD, which revealed that each molecule adopts a β-strand conformation that stack together to form parallel β-sheets. As an additional validation of the approach, the hydrogel-forming sequences of Ac-MYD and Ac-VIE were shuffled. The shuffled sequences were computationally predicted to have lower K*association values and were experimentally verified to not form hydrogels. This illustrates the robustness of the framework in predicting self-associating tripeptides. We expect that this enhanced multimeric de novo peptide design framework will find future application in creating novel self-associating peptides based on unnatural amino acids, and inhibitor peptides of detrimental self-aggregating biological proteins.
Project description:The regular arrangements of β-strands around a central axis in β-barrels and of α-helices in coiled coils contrast with the irregular tertiary structures of most globular proteins, and have fascinated structural biologists since they were first discovered. Simple parametric models have been used to design a wide range of α-helical coiled-coil structures, but to date there has been no success with β-barrels. Here we show that accurate de novo design of β-barrels requires considerable symmetry-breaking to achieve continuous hydrogen-bond connectivity and eliminate backbone strain. We then build ensembles of β-barrel backbone models with cavity shapes that match the fluorogenic compound DFHBI, and use a hierarchical grid-based search method to simultaneously optimize the rigid-body placement of DFHBI in these cavities and the identities of the surrounding amino acids to achieve high shape and chemical complementarity. The designs have high structural accuracy and bind and fluorescently activate DFHBI in vitro and in Escherichia coli, yeast and mammalian cells. This de novo design of small-molecule binding activity, using backbones custom-built to bind the ligand, should enable the design of increasingly sophisticated ligand-binding proteins, sensors and catalysts that are not limited by the backbone geometries available in known protein structures.