Ontology highlight
ABSTRACT: Introduction
Alzheimer's disease (AD) is a progressive neurodegenerative disease that currently affects 6.2 million people in the United States and is projected to impact 12.7 million worldwide in 2050 with no effective disease-modifying therapeutic or cure. In 2011 as part of the National Alzheimer's Project Act, the National Plan to Address Alzheimer's Disease was signed into law which proposed to effectively prevent AD by 2025, which is rapidly approaching. The preclinical phase of AD can begin 20 years prior to diagnosis, which provides an extended window for preventive measures that would exert a transformative impact on incidence and prevalence of AD.Methods
A novel combination of text-mining and natural language processing strategies to identify (1) AD risk factors, (2) therapeutics that can target risk factor pathways, and (3) studies supporting therapeutics in the PubMed database was conducted. To classify the literature relevant to AD preventive strategies, a relevance score (RS) based on STRING (search tool for the retrieval of interacting genes/proteins) score for protein-protein interactions and a confidence score (CS) on Bayesian inference were developed. To address mechanism of action, network analysis of protein targets for effective drugs was conducted. Collectively, the analytic approach, referred to as a targeted-risk-AD-prevention (TRAP) strategy, led to a ranked list of candidate therapeutics to reduce AD risk.Results
Based on TRAP mining of 9625 publications, 364 AD risk factors were identified. Based on risk factor indications, 629 Food and Drug Administration-approved drugs were identified. Computation of ranking scores enabled identification of 46 relevant high confidence (RS & CS > 0.7) drugs associated with reduced AD risk. Within these candidate therapeutics, 16 had more than one clinical study supporting AD risk reduction. Top-ranked therapeutics with high confidence emerged within lipid-lowering, anti-inflammatory, hormone, and metabolic-related drug classes.Discussion
Outcomes of our novel bioinformatic strategy support therapeutic targeting of biological mechanisms and pathways underlying relevant AD risk factors with high confidence. Early interventions that target pathways associated with increased risk of AD have the potential to support the goal of effectively preventing AD by 2025.
SUBMITTER: Vitali F
PROVIDER: S-EPMC8451031 | biostudies-literature |
REPOSITORIES: biostudies-literature