Water Oxidation under Modal Ultrastrong Coupling Conditions Using Gold/Silver Alloy Nanoparticles and Fabry-Perot Nanocavities.
Ontology highlight
ABSTRACT: We developed a photoanode consisting of Au-Ag alloy nanoparticles (NPs), a TiO2 thin film and a Au film (AATA) under modal strong coupling conditions with a large splitting energy of 520 meV, which can be categorized into the ultrastrong coupling regime. We fabricated a photoanode under ultrastrong coupling conditions to verify the relationship between the coupling strength and photoelectric conversion efficiency and successfully performed efficient photochemical reactions. The AATA photoanode showed a 4.0 % maximum incident photon-to-current efficiency (IPCE), obtained at 580 nm, and the internal quantum efficiency (IQE) was 4.1 %. These results were attributed to the high hot-electron injection efficiency due to the larger near-field enhancement and relatively negative potential distribution of the hot electrons. Furthermore, hybrid mode-induced water oxidation using AATA structures was performed, with a Faraday efficiency of more than 70 % for O2 evolution.
SUBMITTER: Suganami Y
PROVIDER: S-EPMC8456937 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA