Unknown

Dataset Information

0

Gene Dosage Analysis on the Single-Cell Transcriptomes Linking Cotranslational Protein Targeting to Metastatic Triple-Negative Breast Cancer.


ABSTRACT: Many recent efforts have been put into the association between expression heterogeneity and different cell types and states using single-cell RNA transcriptome analysis. There is only limited understanding of gene dosage effects for the genetic heterogeneity at the single-cell level. By focusing on concordant copy number variation (CNV) and expression, we presented a computational framework to explore dosage effect for aggressive metastatic triple-negative breast cancer (TNBC) at the single-cell level. In practice, we collected CNV and single-cell expression data from the same patients with independent technologies. By focusing on 47,198 consistent copy number gains (CNG) and gene up-regulation from 1145 single cells, ribosome proteins with important roles in protein targeting were enriched. Independent validation in another metastatic TNBC dataset further prioritized signal recognition particle-dependent protein targeting as the top functional module. More interesting, the increased ribosome gene copies in TNBC may associate with their enhanced stemness and metastatic potential. Indeed, the prioritization of a well-upregulated functional module confirmed by high copy numbers at the single-cell level and contributing to patient survival may indicate the possibility of targeted therapy based on ribosome proteins for TNBC.

SUBMITTER: Liu Y 

PROVIDER: S-EPMC8472593 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10130003 | biostudies-literature
| S-EPMC5899649 | biostudies-literature
| S-EPMC8092567 | biostudies-literature
| S-EPMC7989121 | biostudies-literature
| S-EPMC8184866 | biostudies-literature
| S-EPMC9003656 | biostudies-literature
| S-EPMC3946502 | biostudies-literature
| S-EPMC10229315 | biostudies-literature
| S-EPMC9263221 | biostudies-literature
| S-EPMC8150754 | biostudies-literature