Project description:As a promising energy converter, the requirement for miniaturization and high-accuracy of triboelectric nanogenerators always remains urgent. In this work, a micro triboelectric ultrasonic device was developed by integrating a triboelectric nanogenerator and micro-electro-mechanical systems technology. To date, it sets a world record for the smallest triboelectric device, with a 50?µm-sized diaphragm, and enables the working frequency to be brought to megahertz. This dramatically improves the miniaturization and chip integration of the triboelectric nanogenerator. With 63?kPa@1?MHz ultrasound input, the micro triboelectric ultrasonic device can generate the voltage signal of 16.8?mV and 12.7?mV through oil and sound-attenuation medium, respectively. It also achieved the signal-to-ratio of 20.54?dB and exhibited the practical potential for signal communication by modulating the incident ultrasound. Finally, detailed optimization approaches have also been proposed to further improve the output power of the micro triboelectric ultrasonic device.
Project description:With accelerating trends in miniaturization of semiconductor devices, techniques for energy harvesting become increasingly important, especially in wearable technologies and sensors for the internet of things. Although thermoelectric systems have many attractive attributes in this context, maintaining large temperature differences across the device terminals and achieving low-thermal impedance interfaces to the surrounding environment become increasingly difficult to achieve as the characteristic dimensions decrease. Here, we propose and demonstrate an architectural solution to this problem, where thin-film active materials integrate into compliant, open three-dimensional (3D) forms. This approach not only enables efficient thermal impedance matching but also multiplies the heat flow through the harvester, thereby increasing the efficiencies for power conversion. Interconnected arrays of 3D thermoelectric coils built using microscale ribbons of monocrystalline silicon as the active material demonstrate these concepts. Quantitative measurements and simulations establish the basic operating principles and the key design features. The results suggest a scalable strategy for deploying hard thermoelectric thin-film materials in harvesters that can integrate effectively with soft materials systems, including those of the human body.
Project description:Sensors for industrial and structural health monitoring are often in shielded and hard-to-reach places. Acoustic wireless power transfer (WPT) and piezoelectric backscatter enable batteryless sensors in such scenarios. Although the low efficiency of WPT demands power-conserving sensor nodes, backscatter communication, which consumes near-zero power, has not yet been combined with WPT. This study reviews the available approaches to acoustic WPT and active and passive acoustic through-metal communication. We design a batteryless and backscattering tag prototype from commercially available components. Analysis of the prototypes reveals that low-power hardware poses additional challenges for communication, i.e., unstable and inaccurate oscillators. Therefore, we implement a software-defined receiver using digital phase-locked loops (DPLLs) to mitigate the effects of oscillator instability. We show that DPLLs enable reliable backscatter communication with inaccurate clocks using simulation and real-world measurements. Our prototype achieves communication at 2 kBs-1 over a distance of 3 m. Furthermore, during transmission, the prototype consumes less than 300 μW power. At the same time, over 4 mW of power is received through wireless transmission over a distance of 3 m with an efficiency of 2.8%.
Project description:To investigate biological mechanisms underlying social behaviors and their deficits, social communication via ultrasonic vocalizations (USVs) in mice has received considerable attention as a powerful experimental model. The advances in sound localization technology have facilitated the analysis of vocal interactions between multiple mice. However, existing sound localization systems are built around distributed-microphone arrays, which require a special recording arena and long processing time. Here, we report a novel acoustic camera system, USVCAM, which enables simpler and faster USV localization and assignment. The system comprises recently developed USV segmentation algorithms with a modification for overlapping vocalizations that results in high accuracy. Using USVCAM, we analyzed USV communications in a conventional home cage, and demonstrated novel vocal interactions in female ICR mice under a resident-intruder paradigm. The extended applicability and usability of USVCAM may facilitate future studies investigating typical and atypical vocal communication and social behaviors, as well as the underlying mechanisms.
Project description:Visible light communication systems can be used in a wide variety of applications, from driving to home automation. The use of wearables can increase the potential applications in indoor systems to send and receive specific and customized information. We have designed and developed a fully organic and flexible Visible Light Communication system using a flexible OLED, a flexible P3HT:PCBM-based organic photodiode (OPD) and flexible PCBs for the emitter and receiver conditioning circuits. We have fabricated and characterized the I-V curve, modulation response and impedance of the flexible OPD. As emitter we have used a commercial flexible organic luminaire with dimensions 99 × 99 × 0.88 mm, and we have characterized its modulation response. All the devices show frequency responses that allow operation over 40 kHz, thus enabling the transmission of high quality audio. Finally, we integrated the emitter and receiver components and its electronic drivers, to build an all-organic flexible VLC system capable of transmitting an audio file in real-time, as a proof of concept of the indoor capabilities of such a system.
Project description:Microwave transmission lines in wearable systems are easily damaged after frequent mechanical deformation, posing a severe threat to wireless communication. Here, we report a new strategy to achieve stretchable microwave transmission lines with superior reliability and durability by integrating a self-healable elastomer with serpentine-geometry plasmonic meta-waveguide to support the spoof surface plasmon polariton (SSPP). After mechanical damage, the self-healable elastomer can autonomously repair itself to maintain the electromagnetic performance and mechanical strength. Meanwhile, the specially designed SSPP structure exhibits excellent stability and damage resistance. Even if the self-healing process has not been completed or the eventual repair effect is not ideal, the spoof plasmonic meta-waveguide can still maintain reliable performance. Self-healing material enhances strength and durability, while the SSPP improves stability and gives more tolerance to the self-healing process. Our design coordinates the structural design with material synthesis to maximize the advantages of the SSPP and self-healing material, significantly improving the reliability and durability of stretchable microwave transmission lines. We also perform communication quality experiments to demonstrate the potential of the proposed meta-waveguide as interconnects in future body area network systems.
Project description:Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer's redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.
Project description:Virus is known to resonate in the confined-acoustic dipolar mode with microwave of the same frequency. However this effect was not considered in previous virus-microwave interaction studies and microwave-based virus epidemic prevention. Here we show that this structure-resonant energy transfer effect from microwaves to virus can be efficient enough so that airborne virus was inactivated with reasonable microwave power density safe for the open public. We demonstrate this effect by measuring the residual viral infectivity of influenza A virus after illuminating microwaves with different frequencies and powers. We also established a theoretical model to estimate the microwaves power threshold for virus inactivation and good agreement with experiments was obtained. Such structure-resonant energy transfer induced inactivation is mainly through physically fracturing the virus structure, which was confirmed by real-time reverse transcription polymerase chain reaction. These results provide a pathway toward establishing a new epidemic prevention strategy in open public for airborne virus.
Project description:A process to surface pattern polydimethylsiloxane (PDMS) with ferromagnetic structures of varying sizes (micrometer to millimeter) and thicknesses (>70 ?m) is developed. Their flexibility and magnetic reach are utilized to confer dynamic, additive properties to a variety of substrates, such as coverslips and Eppendorf tubes. It is found that these substrates can generate additional modes of magnetic droplet manipulation, and can tunably steer magnetic-cell organization.
Project description:Flexible and stretchable power sources represent a key technology for the realization of wearable electronics. Developing flexible and stretchable batteries with mechanical endurance that is on par with commercial standards and offer compliance while retaining safety remains a significant challenge. We present a unique approach that demonstrates mechanically robust, intrinsically safe silver-zinc batteries. This approach uses current collectors with enhanced mechanical design, such as helical springs and serpentines, as a structural support and backbone for all battery components. We show wire-shaped batteries based on helical band springs that are resilient to fatigue and retain electrochemical performance over 17,000 flexure cycles at a 0.5-cm bending radius. Serpentine-shaped batteries can be stretched with tunable degree and directionality while maintaining their specific capacity. Finally, the batteries are integrated, as a wearable device, with a photovoltaic module that enables recharging of the batteries.