Project description:A fluorescent ribonucleoside alphabet consisting of highly emissive purine ((th)A, (th)G) and pyrimidine ((th)U, (th)C) analogues, all derived from thieno[3,4-d]pyrimidine as the heterocyclic nucleus, is described. Structural and biophysical analyses demonstrated that the emissive analogues are faithful isomorphic nucleoside surrogates. Photophysical analysis established that the nucleosides offer highly desirable qualities, including visible emission, high quantum yield, and responsiveness to environmental perturbations, traits entirely lacking in their native counterparts.
Project description:In the metabolomics, glycomics, and mass spectrometry of structured small molecules, the combinatoric nature of the problem renders a database impossibly large, and thus de novo analysis is necessary. De novo analysis requires an alphabet of mass difference values used to link peaks in fragmentation spectra when they are different by a mass in the alphabet divided by a charge. Often, this alphabet is not known, prohibiting de novo analysis. A method is proposed that, given fragmentation mass spectra, identifies an alphabet of m/z differences that can build large connected graphs from many intense peaks in each spectrum from a collection. We then introduce a novel approach to efficiently find recurring substructures in the de novo graph results.
Project description:Microbial contamination of pharmaceutical preparations may cause health hazard to the patient (e.g. infection, pyrogenic or allergic reaction), altered therapeutic activity of the product, or other decrease in quality (turbidity, loss of consistency, altered pH). This chapter provides a general introduction on pharmaceutical microbiology by focusing on the essential properties of micro-organisms. First of all the basic characteristics of life and the types of biological contaminants and potentially infectious agents of pharmaceutical products will be discussed: viz. prions, viruses, mollicutes, bacteria, fungi, and endotoxins. In the next section factors affecting survival and growth of micro-organisms are discussed. In addition to well-known factors such as time, temperature, and chemical and physical characteristics of the environment, attention will be paid to biofilm formation. Primary microbiological contamination is prevented by implementing an adequate microbiological quality control and quality assurance program and by following cGMPs during production. Microbiological quality control of pharmaceutical preparations and monitoring of production areas depend on the detection and quantification of micro-organisms. The classical, growth based, methods and some of the commercially available alternative methods are discussed. Understanding essential microbiological concepts is necessary in designing both microbiologically stable pharmaceutical products and ensuring an effective quality control and monitoring program within the manufacturing or preparation facility.
Project description:BACKGROUND:Digitalization and artificial intelligence have an important impact on the way microbiology laboratories will work in the near future. Opportunities and challenges lie ahead to digitalize the microbiological workflows. Making efficient use of big data, machine learning, and artificial intelligence in clinical microbiology requires a profound understanding of data handling aspects. OBJECTIVE:This review article summarizes the most important concepts of digital microbiology. The article gives microbiologists, clinicians and data scientists a viewpoint and practical examples along the diagnostic process. SOURCES:We used peer-reviewed literature identified by a PubMed search for digitalization, machine learning, artificial intelligence and microbiology. CONTENT:We describe the opportunities and challenges of digitalization in microbiological diagnostic processes with various examples. We also provide in this context key aspects of data structure and interoperability, as well as legal aspects. Finally, we outline the way for applications in a modern microbiology laboratory. IMPLICATIONS:We predict that digitalization and the usage of machine learning will have a profound impact on the daily routine of laboratory staff. Along the analytical process, the most important steps should be identified, where digital technologies can be applied and provide a benefit. The education of all staff involved should be adapted to prepare for the advances in digital microbiology.
Project description:The field of microbiology has experienced significant growth due to transformative advances in technology and the influx of scientists driven by a curiosity to understand how microbes sustain myriad biochemical processes that maintain Earth. With this explosion in scientific output, a significant bottleneck has been the ability to rapidly disseminate new knowledge to peers and the public. Preprints have emerged as a tool that a growing number of microbiologists are using to overcome this bottleneck. Posting preprints can help to transparently recruit a more diverse pool of reviewers prior to submitting to a journal for formal peer review. Although the use of preprints is still limited in the biological sciences, early indications are that preprints are a robust tool that can complement and enhance peer-reviewed publications. As publishing moves to embrace advances in Internet technology, there are many opportunities for preprints and peer-reviewed journals to coexist in the same ecosystem.
Project description:Unique microbial communities in ancient volcanic ash layers within deep marine sediments are structured by the composition of iron phases