Unknown

Dataset Information

0

The [4Fe4S] Cluster of Yeast DNA Polymerase ε Is Redox Active and Can Undergo DNA-Mediated Signaling.


ABSTRACT: Many DNA replication and DNA repair enzymes have been found to carry [4Fe4S] clusters. The major leading strand polymerase, DNA polymerase ε (Pol ε) from Saccharomyces cerevisiae, was recently reported to have a [4Fe4S] cluster located within the catalytic domain of the largest subunit, Pol2. Here the redox characteristics of the [4Fe4S] cluster in the context of that domain, Pol2CORE, are explored using DNA electrochemistry, and the effects of oxidation and rereduction on polymerase activity are examined. The exonuclease deficient variant D290A/E292A, Pol2COREexo-, was used to limit DNA degradation. While no redox signal is apparent for Pol2COREexo- on DNA-modified electrodes, a large cathodic signal centered at -140 mV vs NHE is observed after bulk oxidation. A double cysteine to serine mutant (C665S/C668S) of Pol2COREexo-, which lacks the [4Fe4S] cluster, shows no similar redox signal upon oxidation. Significantly, protein oxidation yields a sharp decrease in polymerization, while rereduction restores activity almost to the level of untreated enzyme. Moreover, the addition of reduced EndoIII, a bacterial DNA repair enzyme containing [4Fe4S]2+, to oxidized Pol2COREexo- bound to its DNA substrate also significantly restores polymerase activity. In contrast, parallel experiments with EndoIIIY82A, a variant of EndoIII, defective in DNA charge transport (CT), does not show restoration of activity of Pol2COREexo-. We propose a model in which EndoIII bound to the DNA duplex may shuttle electrons through DNA to the DNA-bound oxidized Pol2COREexo- via DNA CT and that this DNA CT signaling offers a means to modulate the redox state and replication by Pol ε.

SUBMITTER: Pinto MN 

PROVIDER: S-EPMC8499023 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5881389 | biostudies-literature
| S-EPMC4061903 | biostudies-literature
| S-EPMC5041465 | biostudies-literature
| S-EPMC5338353 | biostudies-literature
| S-EPMC3986358 | biostudies-literature
| S-EPMC5741086 | biostudies-literature
| S-EPMC2797225 | biostudies-literature
| S-EPMC5423460 | biostudies-literature
| S-EPMC5935490 | biostudies-literature
| S-EPMC9581978 | biostudies-literature