Project description:Three-dimensional (3D) structural information on many length scales is of central importance in biological research. Excellent methods exist to obtain structures of molecules at atomic, organelles at electron microscopic, and tissue at light-microscopic resolution. A gap exists, however, when 3D tissue structure needs to be reconstructed over hundreds of micrometers with a resolution sufficient to follow the thinnest cellular processes and to identify small organelles such as synaptic vesicles. Such 3D data are, however, essential to understand cellular networks that, particularly in the nervous system, need to be completely reconstructed throughout a substantial spatial volume. Here we demonstrate that datasets meeting these requirements can be obtained by automated block-face imaging combined with serial sectioning inside the chamber of a scanning electron microscope. Backscattering contrast is used to visualize the heavy-metal staining of tissue prepared using techniques that are routine for transmission electron microscopy. Low-vacuum (20-60 Pa H(2)O) conditions prevent charging of the uncoated block face. The resolution is sufficient to trace even the thinnest axons and to identify synapses. Stacks of several hundred sections, 50-70 nm thick, have been obtained at a lateral position jitter of typically under 10 nm. This opens the possibility of automatically obtaining the electron-microscope-level 3D datasets needed to completely reconstruct the connectivity of neuronal circuits.
Project description:Serial block face scanning electron microscopy (SBF-SEM) is a relatively new technique that allows the acquisition of serially sectioned, imaged and digitally aligned ultrastructural data. There is a wealth of information that can be obtained from the resulting image stacks but this presents a new challenge for researchers - how to computationally analyse and make best use of the large datasets produced. One approach is to reconstruct structures and features of interest in 3D. However, the software programmes can appear overwhelming, time-consuming and not intuitive for those new to image analysis. There are a limited number of published articles that provide sufficient detail on how to do this type of reconstruction. Therefore, the aim of this paper is to provide a detailed step-by-step protocol, accompanied by tutorial videos, for several types of analysis programmes that can be used on raw SBF-SEM data, although there are more options available than can be covered here. To showcase the programmes, datasets of skeletal muscle from foetal and adult guinea pigs are initially used with procedures subsequently applied to guinea pig cardiac tissue and locust brain. The tissue is processed using the heavy metal protocol developed specifically for SBF-SEM. Trimmed resin blocks are placed into a Zeiss Sigma SEM incorporating the Gatan 3View and the resulting image stacks are analysed in three different programmes, Fiji, Amira and MIB, using a range of tools available for segmentation. The results from the image analysis comparison show that the analysis tools are often more suited to a particular type of structure. For example, larger structures, such as nuclei and cells, can be segmented using interpolation, which speeds up analysis; single contrast structures, such as the nucleolus, can be segmented using the contrast-based thresholding tools. Knowing the nature of the tissue and its specific structures (complexity, contrast, if there are distinct membranes, size) will help to determine the best method for reconstruction and thus maximize informative output from valuable tissue.
Project description:This protocol describes how to prepare intact mouse cochleae for serial block-face scanning electron microscopy (SBEM). The detailed workflow includes cochlea fixation, en bloc staining, resin embedding, X-ray microscopy-guided trimming and SBEM data acquisition. This protocol allows large-scale, nanometer-resolution three-dimensional imaging of subcellular structures in a targeted tonotopic range of the cochlea and enables fast volumetric scan at submicron resolution using a compact X-ray microscope. For complete details on the use and execution of this protocol, please refer to Hua et al. (2021).
Project description:The syncytiotrophoblast forms a continuous barrier between the maternal and fetal circulations. Here we present a serial block-face scanning electron microscopy (SBFSEM) study, based on a single image stack, showing pooling of fetal blood underneath a region of stretched syncytiotrophoblast that has become detached from the basement membrane. Erythrocytes are protruding from discrete holes in the syncytiotrophoblast suggesting that, under specific circumstances, the syncytiotrophoblast may be permeable to fetal cells. This observation represents a pathological process but it poses questions about the physical properties and permeability of the syncytiotrophoblast and may represent an early stage in the formation of fibrin deposits in areas of syncytial denudation. This study also illustrates how the 3D images generated by SBFSEM allow the interpretation of structures that could not be understood from a single histological section.
Project description:Serial block-face scanning electron microscopy (SBEM) is becoming increasingly popular for a wide range of applications in many disciplines from biology to material sciences. This review focuses on applications for circuit reconstruction in neuroscience, which is one of the major driving forces advancing SBEM. Neuronal circuit reconstruction poses exceptional challenges to volume EM in terms of resolution, field of view, acquisition time and sample preparation. Mapping the connections between neurons in the brain is crucial for understanding information flow and information processing in the brain. However, information on the connectivity between hundreds or even thousands of neurons densely packed in neuronal microcircuits is still largely missing. Volume EM techniques such as serial section TEM, automated tape-collecting ultramicrotome, focused ion-beam scanning electron microscopy and SBEM (microtome serial block-face scanning electron microscopy) are the techniques that provide sufficient resolution to resolve ultrastructural details such as synapses and provides sufficient field of view for dense reconstruction of neuronal circuits. While volume EM techniques are advancing, they are generating large data sets on the terabyte scale that require new image processing workflows and analysis tools. In this review, we present the recent advances in SBEM for circuit reconstruction in neuroscience and an overview of existing image processing and analysis pipelines.
Project description:The cornea is the most highly innervated tissue in the body. It is generally accepted that corneal stromal nerves penetrate the epithelial basal lamina giving rise to intra-epithelial nerves. During the course of a study wherein we imaged corneal nerves in mice, we observed a novel neuronal-epithelial cell interaction whereby nerves approaching the epithelium in the cornea fused with basal epithelial cells, such that their plasma membranes were continuous and the neuronal axoplasm freely abutted the epithelial cytoplasm. In this study we sought to determine the frequency, distribution, and morphological profile of neuronal-epithelial cell fusion events within the cornea. Serial electron microscopy images were obtained from the anterior stroma in the paralimbus and central cornea of 8-10 week old C57BL/6J mice. We found evidence of a novel alternative behavior involving a neuronal-epithelial interaction whereby 42.8% of central corneal nerve bundles approaching the epithelium contain axons that fuse with basal epithelial cells. The average surface-to-volume ratio of a penetrating nerve was 3.32, while the average fusing nerve was smaller at 1.39 (p ? 0.0001). Despite this, both neuronal-epithelial cell interactions involve similarly sized discontinuities in the basal lamina. In order to verify the plasma membrane continuity between fused neurons and epithelial cells we used the lipophilic membrane tracer DiI. The majority of corneal nerves were labeled with DiI after application to the trigeminal ganglion and, consistent with our ultrastructural observations, fusion sites recognized as DiI-labeled basal epithelial cells were located at points of stromal nerve termination. These studies provide evidence that neuronal-epithelial cell fusion is a cell-cell interaction that occurs primarily in the central cornea, and fusing nerve bundles are morphologically distinct from penetrating nerve bundles. This is, to our knowledge, the first description of neuronal-epithelial cell fusion in the literature adding a new level of complexity to the current understanding of corneal innervation.
Project description:Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell-specific storage organelles, the Weibel-Palade bodies, during their biogenesis at the Golgi apparatus. Weibel-Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel-Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell.
Project description:The placental microvasculature is a conduit for fetal blood allowing solute exchange between the mother and the fetus. Serial block-face scanning electron microscopy (SBF SEM) allows ultrastructure to be viewed in three dimensions and provides a new perspective on placental anatomy. This study used SBF SEM to study endothelial cells within the human placental microvasculature from uncomplicated pregnancies. Term human placental villi were aldehyde-fixed and processed for imaging by SBF SEM. Manual segmentation was carried out on a terminal villous capillary and an intermediate villous arteriole and venule. Twenty-seven SBF SEM stacks from terminal villi were analysed using stereological approaches to determine the volumes of microvascular components and the proportions of pericyte coverage. SBF SEM analysis of capillary endothelial cells revealed the presence of interendothelial protrusions (IEPs) originating from the donor cell at the endothelial junction and forming deep thin projections up to 7 μm into the adjacent endothelial cells. IEP density was estimated to be in the order of 35 million cm-3 placental tissue. Pericytes cover 15% of the fetal capillary surface area in terminal villi. In comparison, the cytotrophoblast covered 24% of the syncytiotrophoblast basal membrane. A trans-endothelial channel was observed in a region of the vasculo-syncytial capillary. Pericyte coverage was extensive in both arteriole and venule. Three-dimensional imaging of the placental microvasculature identified novel ultrastructural features and provided an insight into factors that may influence capillary permeability and placental function. We hypothesise that the IEPs may allow mechanosensing between adjacent endothelial cells to assist in the maintenance of vessel integrity. The numbers of endothelial junctions, the presence of trans-endothelial channels and the extent of pericyte coverage all provide an insight into the factors determining capillary permeability.
Project description:Serial block-face electron microscopy (SBEM) provides nanoscale 3D ultrastructure of embedded and stained cells and tissues in volumes of up to 107?µm3. In SBEM, electrons with 1-3?keV energies are incident on a specimen block, from which backscattered electron (BSE) images are collected with x, y resolution of 5-10?nm in the block-face plane, and successive layers are removed by an in situ ultramicrotome. Spatial resolution along the z-direction, however, is limited to around 25?nm by the minimum cutting thickness. To improve the z-resolution, we have extracted depth information from BSE images acquired at dual primary beam energies, using Monte Carlo simulations of electron scattering. The relationship between depth of stain and ratio of dual-energy BSE intensities enables us to determine 3D structure with a ×2 improvement in z-resolution. We demonstrate the technique by sub-slice imaging of hepatocyte membranes in liver tissue.
Project description:Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow that are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; and fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of microtubules within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.