Ontology highlight
ABSTRACT: Simple Summary
Although immune checkpoint blockade has yielded unprecedented and durable responses in cancer patients, the efficacy of this treatment remains limited. Radiation therapy can induce immunogenic cell death that contributes to the local efficacy of irradiation. However, radiation-induced systemic responses are scarce. Studies combining radiation with checkpoint inhibitors suggest a synergistic potential of this strategy. In this review, we focused on parameters that can be optimized to enhance the anti-tumor immune response that results from this association, in order to achieve data on dose, fractionation, target volume, lymph nodes sparing, radiation particles, and other immunomodulatory agents. These factors should be considered in future trials for better clinical outcomes. To this end, we discussed the main preclinical and clinical data available to optimize the efficacy of the treatment combination. Abstract
Immune checkpoint inhibitors have been associated with long-term complete responses leading to improved overall survival in several cancer types. However, these novel immunotherapies are only effective in a small proportion of patients, and therapeutic resistance represents a major limitation in clinical practice. As with chemotherapy, there is substantial evidence that radiation therapy promotes anti-tumor immune responses that can enhance systemic responses to immune checkpoint inhibitors. In this review, we discuss the main preclinical and clinical evidence on strategies that can lead to an enhanced response to PD-1/PD-L1 blockade in combination with radiation therapy. We focused on central issues in optimizing radiation therapy, such as the optimal dose and fractionation for improving the therapeutic ratio, as well as the impact on immune and clinical responses of dose rate, target volume, lymph nodes irradiation, and type of radiation particle. We explored the addition of a third immunomodulatory agent to the combination such as other checkpoint inhibitors, chemotherapy, and treatment targeting the tumor microenvironment components. The strategies described in this review provide a lead for future clinical trials.
SUBMITTER: Boustani J
PROVIDER: S-EPMC8508444 | biostudies-literature |
REPOSITORIES: biostudies-literature