Project description:The title compound, [Re(2)(OH)(C(10)H(8)N(2))(2)(CO)(6)][ReO(4)], is a mixed-valence rhenium compound containing discrete anions and cations. The Re(I) atoms are in a slightly distorted octa-hedral environment, whereas the Re(VII) atoms show the typical tetra-hedral coordination mode. The dihedral angle between the two bipyridine groups is 34.3?(7)°.
Project description:Recurrence in hepatocellular carcinoma (HCC) after conventional treatments is a crucial challenge. Despite the promising progress in advanced targeted therapies, HCC is the fourth leading cause of cancer death worldwide. Radionuclide therapy can potentially be a practical targeted approach to address this concern. Rhenium-188 (188Re) is a β-emitting radionuclide used in the clinic to induce apoptosis and inhibit cell proliferation. Although adherent cell cultures are efficient and reliable, appropriate cell-cell and cell-extracellular matrix (ECM) contact is still lacking. Thus, we herein aimed to assess 188Re as a potential therapeutic component for HCC in 2D and 3D models. The death rate in treated Huh7 and HepG2 lines was significantly higher than in untreated control groups using viability assay. After treatment with 188ReO4, Annexin/PI data indicated considerable apoptosis induction in HepG2 cells after 48 h but not Huh7 cells. Quantitative RT-PCR and western blotting data also showed increased apoptosis in response to 188ReO4 treatment. In Huh7 cells, exposure to an effective dose of 188ReO4 led to cell cycle arrest in the G2 phase. Moreover, colony formation assay confirmed post-exposure growth suppression in Huh7 and HepG2 cells. Then, the immunostaining displayed proliferation inhibition in the 188ReO4-treated cells on 3D scaffolds of liver ECM. The PI3-AKT signaling pathway was activated in 3D culture but not in 2D culture. In nude mice, Huh7 cells treated with an effective dose of 188ReO4 lost their tumor formation ability compared to the control group. These findings suggest that 188ReO4 can be a potential new therapeutic agent against HCC through induction of apoptosis and cell cycle arrest and inhibition of tumor formation. This approach can be effectively combined with antibodies and peptides for more selective and personalized therapy.
Project description:A novel alternative route to access rhenium(V)-phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2 Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4- ) in the presence of triphenylphosphine led to oxidative decomposition of the H2 Pcs, giving their respective phthalonitriles. Conversely, treatment of H2 Pcs with ReO4- employing sodium metabisulfite yielded the desired ReV O-Pc complex. Finally, reaction of H2 Pcs with ReO4- and NaBH4 as reducing agent led to the formation of rhenium oxide (Rex Oy ) nanoparticles (NPs). The NP synthesis was optimised, and the Rex Oy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant Rex Oy -TAPc-FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA-MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
Project description:In the crystal structure of the title compound, C(6)H(6)N(3) (+)·C(6)H(2)N(3)O(7) (-), anions and cations are linked into chains along [010] by inter-molecular N-H?O hydrogen bonds. These chains are further stabilized by weak C-H?O hydrogen bonds and ?-? stacking inter-actions with a centroid-centroid distance of 3.908?(1)?Å.
Project description:Nonsymmorphic symmetries, which involve fractional lattice translations, can generate exotic types of fermionic excitations in crystalline materials. Here we propose a topological phase arising from nonsymmorphic symmetries-the hourglass Dirac chain metal, and predict its realization in the rhenium dioxide. We show that ReO2 features hourglass-type dispersion in the bulk electronic structure dictated by its nonsymmorphic space group. Due to time reversal and inversion symmetries, each band has an additional two-fold degeneracy, making the neck crossing-point of the hourglass four-fold degenerate. Remarkably, close to the Fermi level, the neck crossing-point traces out a Dirac chain-a chain of connected four-fold-degenerate Dirac loops-in the momentum space. The symmetry protection, the transformation under symmetry-breaking, and the associated topological surface states of the Dirac chain are revealed. Our results open the door to an unknown class of topological matters, and provide a platform to explore their intriguing physics.
Project description:In the asymmetric unit of the title hydrated salt, 2C6H6N3 (+)·SO4 (2-)·2H2O, there are two independent sulfate ions, one lying on a twofold axis, and the other in a general position. There are three independent benzotriazolium cations and three independent water mol-ecules. The sulfate ion in a general position forms hydrogen-bonded chains of stoichiometry SO4 (2-)·3H2O in the b-axis direction. The sulfate on the twofold axis is unhydrated and accepts hydrogen bonds from four surrounding benzotriazoles. The benzotriazolium cations form two types of stacks along b. One stack contains only one type of independent cation, related by inversion centers. The other stack contains two alternating independent cations and no symmetry. The two types of stacks have orientations which are rotated by about 79° in the ac plane. 12 symmetrically distinct hydrogen bonds of type N-H?O(sulfate), N-H?O(water), O-H?O(sulfate) and O-H?O(water), with donor-acceptor distances in the range 2.5490?(13)-2.7871?(12)?Å, form a three-dimensional array.
Project description:In the title molecular salt, C6H6N3 (+)·C7H7O3S(-), the components are linked by N-H⋯O hydrogen bonds into zigzag chains along [100]. These chains are further connected by weak C-H⋯O, C-H⋯π and π-π (centroid-to-centroid distances = 3.510, 3.701 and 3.754 Å) inter-actions into a three-dimensional network.
Project description:The interaction of free-base triarylcorroles with Re2(CO)10 in 1,2-dichlorobenzene in the presence of 2,6-lutidine at 180 °C under strict anerobic conditions afforded approximately 10% yields of rhenium corrole dimers. The compounds exhibited diamagnetic 1H NMR spectra consistent with a metal-metal quadruple bond with a σ2π4δ2 orbital occupancy. One of the compounds proved amenable to single-crystal X-ray structure determination, yielding a metal-metal distance of ∼2.24 Å, essentially identical to that in triple-bonded osmium corrole dimers. On the other hand, the electrochemical properties of Re and Os corrole dimers proved to be radically different. Thus, the reduction potentials of the Re corrole dimers are some 800 mV upshifted relative to those of their Os counterparts. Stated differently, the Re corrole dimers are dramatically easier to reduce, reflecting electron addition to δ* versus π* molecular orbitals for Re and Os corrole dimers, respectively. The data also imply electrochemical HOMO-LUMO gaps of only 1.0-1.1 V for rhenium corrole dimers, compared with values of 1.85-1.90 V for their Os counterparts. These HOMO-LUMO gaps rank among the first such values reported for quadruple-bonded transition-metal dimers for any type of supporting ligand, porphyrin-type or not.
Project description:A common issue of functional nanoagents for potential clinical translation is whether they are biodegradable or renal clearable. Previous studies have widely explored noble metal nanoparticles (Au and Pd) as the first generation of photothermal nanoagents for cancer therapy, but all of the reported noble metal nanoparticles are non-degradable. On the other hand, rhenium (Re), one of the noble and precious metals with a high atomic number (Z = 75), has been mainly utilized as a jet superalloy or chemical catalyst, but the biological characteristics and activity of Re nanoparticles have never been evaluated until now. To address these issues, here we report a simple and scalable liquid-reduction strategy to synthesize PEGylated Re nanoclusters, which exhibit intrinsically high photothermal conversion efficacy (33.0%) and high X-ray attenuation (21.2 HU mL mg-1), resulting in excellent photothermal ablation (100% tumor elimination) and higher CT enhancement (15.9 HU mL mg-1 for commercial iopromide in clinics). Impressively, biocompatible Re nanoclusters can degrade into renal clearable ReO4 - ions after exposure to H2O2, and thus achieve much higher renal clearance efficiency than conventional gold nanoparticles. This work reveals the potential of theranostic application of metallic Re nanoclusters with both biodegradation and renal clearance properties and provides insights into the design of degradable metallic platforms with high clinical prospects.
Project description:In the title mol-ecular salt, (C(5)H(6)N(3)O(2))[ReO(4)], the cations and tetrahedral anions are linked by trifurcated N-H?(O,O,O) and bifurcated N-H?(O,O) hydrogen bonds, as well as weak C-H?O inter-actions. This results in alternating corrugated inorganic and organic layers in the crystal.