Unknown

Dataset Information

0

Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction.


ABSTRACT: Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers. Here, we achieve high quality energy-dispersive tomograms from low dose, noisy datasets using a dedicated iterative reconstruction algorithm. This exploits the spatial smoothness and inter-channel structural correlation in the spectral domain using two carefully chosen regularisation terms. For a multi-phase phantom, a reduction in scan time of 36 times is demonstrated. Spectral analysis methods including K-edge subtraction and absorption step-size fitting are evaluated for an ex vivo, single (iodine)-stained biological sample, where low chemical concentration and inhomogeneous distribution can affect soft tissue segmentation and visualisation. The reconstruction algorithms are available through the open-source Core Imaging Library. Taken together, these tools offer new capabilities for visualisation and elemental mapping, with promising applications for multiply-stained biological specimens.

SUBMITTER: Warr R 

PROVIDER: S-EPMC8531290 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhanced hyperspectral tomography for bioimaging by spatiospectral reconstruction.

Warr Ryan R   Ametova Evelina E   Cernik Robert J RJ   Fardell Gemma G   Handschuh Stephan S   Jørgensen Jakob S JS   Papoutsellis Evangelos E   Pasca Edoardo E   Withers Philip J PJ  

Scientific reports 20211021 1


Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures,  ...[more]

Similar Datasets

| S-EPMC10129064 | biostudies-literature
| S-EPMC8053970 | biostudies-literature
| S-EPMC9202651 | biostudies-literature
| S-EPMC5383680 | biostudies-literature
| S-EPMC5043135 | biostudies-literature
| S-EPMC6715656 | biostudies-literature
| S-EPMC11373792 | biostudies-literature
| S-EPMC7232986 | biostudies-literature
| S-EPMC8769495 | biostudies-literature
| S-EPMC2817836 | biostudies-literature