Project description:Plasmon excitation in molecular tunnel junctions is interesting because the plasmonic properties of the device can be, in principle, controlled by varying the chemical structure of the molecules. The plasmon energy of the excited plasmons usually follows the quantum cutoff law, but frequently overbias plasmon energy has been observed, which can be explained by quantum shot noise, multielectron processes, or hot carrier models. So far, clear correlations between molecular structure and the plasmon energy have not been reported. Here, we introduce halogenated molecules (HS(CH2)12X, with X = H, F, Cl, Br, or I) with polarizable terminal atoms as the tunnel barriers and demonstrate molecular control over both the excited plasmon intensity and energy for a given applied voltage. As the polarizability of the terminal atom increases, the tunnel barrier height decreases, resulting in an increase in the tunneling current and the plasmon intensity without changing the tunneling barrier width. We also show that the plasmon energy is controlled by the electrostatic potential drop at the molecule-electrode interface, which depends on the polarizability of the terminal atom and the metal electrode material (Ag, Au, or Pt). Our results give new insights in the relation between molecular structure, electronic structure of the molecular junction, and the plasmonic properties which are important for the development of molecular scale plasmonic-electronic devices.
Project description:The significant electric field enhancements that occur in plasmonic nanogap junctions are instrumental in boosting the performance of spectroscopy, optoelectronics and catalysis. Electron tunneling, associated with quantum effects in small junctions, is reported to limit the electric field enhancement. However, observing and quantitatively determining how tunneling alters the electric fields within small gaps is challenging due to the nanoscale dimensions and heterogeneity present experimentally. Here, we report the use of a nitrile probe placed in the nanoparticle-film gap junctions to demonstrate that the change in the nitrile stretching band associated with the vibrational Stark effect can be directly correlated with the local electric field environment modulated by gap size variations. The emergence of Stark shifts correlates with plasmon resonance shifts associated with electron tunneling across the gap junction. Time dependent changes in the nitrile band with extended illumination further support a build up of charge associated with optical rectification in the coupled plasmon system. Computational models agree with our experimental observations that the frequency shifts arise from a vibrational Stark effect. Large local electric fields associated with the smallest gap junctions give rise to significant Stark shifts. These results indicate that nitrile Stark probes can measure the local field strengths in plasmonic junctions and monitor the subtle changes in the local electric fields resulting from electron tunneling.
Project description:Monolayer molybdenum disulfide (MoS2) has recently attracted intense interests due to its remarkable optical properties of valley-selected optical response, strong nonlinear wave mixing and photocurrent/photovoltaic generation and many corresponding potential applications. However, the nature of atomic-thin thickness of monolayer MoS2 leads to inefficient light-matter interactions and thereby hinders its optoelectronic applications. Here we report on the enhanced and controllable photo-response in MoS2 by utilizing surface plasmonic resonance based on metallic nano-antenna with characteristic lateral size of 40 × 80 nm. Our nano-antenna is designed to have one plasmonic resonance in the visible range and can enhance the MoS2 photoluminescence intensity up to 10 folds. The intensity enhancement can be effectively tuned simply by the manipulation of incident light polarization. In addition, we can also control the oscillator strength ratio between exciton and trion states by controlling polarization dependent hot carrier doping in MoS2. Our results demonstrate the possibility in controlling the photo-response in broad two-dimensional materials by well-designed nano-antenna and facilitate its coming optoelectronic applications.
Project description:Molecular transistors operating in the quantum tunneling regime represent potential electronic building blocks for future integrated circuits. However, due to their complex fabrication processes and poor stability, traditional molecular transistors can only operate stably at cryogenic temperatures. Here, through a combined experimental and theoretical investigation, we demonstrate a new design of vertical molecular tunneling transistors, with stable switching operations up to room temperature, formed from cross-plane graphene/self-assembled monolayer (SAM)/gold heterostructures. We show that vertical molecular junctions formed from pseudo-p-bis((4-(acetylthio)phenyl)ethynyl)-p-[2,2]cyclophane (PCP) SAMs exhibit destructive quantum interference (QI) effects, which are absent in 1,4-bis(((4-acetylthio)phenyl)ethynyl)benzene (OPE3) SAMs. Consequently, the zero-bias differential conductance of the former is only about 2% of the latter, resulting in an enhanced on-off current ratio for (PCP) SAMs. Field-effect control is achieved using an ionic liquid gate, whose strong vertical electric field penetrates through the graphene layer and tunes the energy levels of the SAMs. The resulting on-off current ratio achieved in PCP SAMs can reach up to ~330, about one order of magnitude higher than that of OPE3 SAMs. The demonstration of molecular junctions with combined QI effect and gate tunability represents a critical step toward functional devices in future molecular-scale electronics.
Project description:We report large exciton tuning in WSe2 monolayers via substrate induced non-degenerate doping. We observe a redshift of ∼62 meV for the A exciton together with a 1-2 orders of magnitude photoluminescence (PL) quenching when the monolayer WSe2 is brought in contact with highly oriented pyrolytic graphite (HOPG) compared to dielectric substrates such as hBN and SiO2. As the evidence of doping from HOPG to WSe2, a drastic increase of the intensity ratio of trions to neutral excitons was observed. Using a systematic PL and Kelvin probe force microscopy (KPFM) investigation on WSe2/HOPG, WSe2/hBN, and WSe2/graphene, we conclude that this unique excitonic behavior is induced by electron doping from the substrate. Our results propose a simple yet efficient way for exciton tuning in monolayer WSe2, which plays a central role in the fundamental understanding and further device development.
Project description:Electrons have so little mass that in less than a second they can tunnel through potential energy barriers that are several electron-volts high and several nanometers wide. Electron tunneling is a critical functional element in a broad spectrum of applications, ranging from semiconductor diodes to the photosynthetic and respiratory charge transport chains. Prior to the 1970s, chemists generally believed that reactants had to collide in order to effect a transformation. Experimental demonstrations that electrons can transfer between reactants separated by several nanometers led to a revision of the chemical reaction paradigm. Experimental investigations of electron exchange between redox partners separated by molecular bridges have elucidated many fundamental properties of these reactions, particularly the variation of rate constants with distance. Theoretical work has provided critical insights into the superexchange mechanism of electronic coupling between distant redox centers. Kinetics measurements have shown that electrons can tunnel about 2.5 nm through proteins on biologically relevant time scales. Longer-distance biological charge flow requires multiple electron tunneling steps through chains of redox cofactors. The range of phenomena that depends on long-range electron tunneling continues to expand, providing new challenges for both theory and experiment.
Project description:The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation-reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s(-1) for *Zn-cyt c --> Fe(III)-cyt c; 2000 s(-1) for Fe(II)-cyt c --> Zn-cyt c(+))] over a Zn-Fe distance of 24.1 A closely match those for intraprotein electron tunneling over similar donor-acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein-protein interface.
Project description:Background: Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) with intrinsically crystal inversion-symmetry breaking have shown many advanced optical properties. In particular, the valley polarization in 2D TMDCs that can be addressed optically has inspired new physical phenomena and great potential applications in valleytronics. Results: Here, we propose a TMDC-nanoantenna system that could effectively enhance and direct emission from the two valleys in TMDCs into diametrically opposite directions. By mimicking the emission from each valley of the monolayer of WSe2 as a chiral point-dipole emitter, we demonstrate numerically that the emission from different valleys is directed into opposite directions when coupling to a double-bar plasmonic nanoantenna. The directionality derives from the interference between the dipole and quadrupole modes excited in the two bars, respectively. Thus, we could tune the emission direction from the proposed TMDC-nanoantenna system by tuning the pumping without changing the antenna structure. Furthermore, we discuss the general principles and the opportunities to improve the average performance of the nanoantenna structure. Conclusion: The scheme we propose here can potentially serve as an important component for valley-based applications, such as non-volatile information storage and processing.
Project description:NADH:ubiquinone oxidoreductase (complex I) plays a central role in the respiratory electron transport chain by coupling the transfer of electrons from NADH to ubiquinone to the creation of the proton gradient across the membrane necessary for ATP synthesis. Here the atomistic details of electronic wiring of all Fe/S clusters in complex I are revealed by using the tunneling current theory and computer simulations; both density functional theory and semiempirical electronic structure methods were used to examine antiferromagnetically coupled spin states and corresponding tunneling wave functions. Distinct electron tunneling pathways between neighboring Fe/S clusters are identified; the pathways primarily consist of two cysteine ligands and one additional key residue. Internal water between protein subunits is identified as an essential mediator enhancing the overall electron transfer rate by almost three orders of magnitude to achieve a physiologically significant value. The identified key residues are further characterized by sensitivity of electron transfer rates to their mutations, examined in simulations, and their conservation among complex I homologues. The unusual electronic structure properties of Fe(4)S(4) clusters in complex I explain their remarkable efficiency of electron transfer.
Project description:Molecular electronics enables functional electronic behavior via single molecules or molecular self-assembled monolayers, providing versatile opportunities for hybrid molecular-scale electronic devices. Although various molecular junction structures are constructed to investigate charge transfer dynamics, significant challenges remain in terms of interfacial charging effects and far-field background signals, which dominantly block the optoelectrical observation of interfacial charge transfer dynamics. Here, tip-induced optoelectrical engineering is presented that synergistically correlates photo-induced force microscopy and Kelvin probe force microscopy to remotely control and probe the interfacial charge transfer dynamics with sub-10 nm spatial resolution. Based on this approach, the optoelectrical origin of metal-molecule interfaces is clearly revealed by the nanoscale heterogeneity of the tip-sample interaction and optoelectrical reactivity, which theoretically aligned with density functional theory calculations. For a practical device-scale demonstration of tip-induced optoelectrical engineering, interfacial tunneling is remotely controlled at a 4-inch wafer-scale metal-insulator-metal capacitor, facilitating a 5.211-fold current amplification with the tip-induced electrical field. In conclusion, tip-induced optoelectrical engineering provides a novel strategy to comprehensively understand interfacial charge transfer dynamics and a non-destructive tunneling control platform that enables real-time and real-space investigation of ultrathin hybrid molecular systems.