Reduced MAGI3 level by HPV18E6 contributes to Wnt/β-catenin signaling activation and cervical cancer progression.
Ontology highlight
ABSTRACT: Human papillomavirus type 18 (HPV18) has high carcinogenic power in invasive cervical cancer (ICC) development. However, the underlying mechanism remains elusive. The carcinogenic properties of HPV18 require the PDZ-binding motif of its E6 oncoprotein (HPV18 E6) to degrade its target PSD95/Dlg/ZO-1 (PDZ) proteins. In this study, we demonstrated that the PDZ protein membrane-associated guanylate kinase, WW and PDZ domain containing 3 (MAGI3) inhibited the Wnt/β-catenin pathway, and subsequently cervical cancer (CC) cell migration and invasion, via decreasing β-catenin levels. By reducing MAGI3 protein levels, HPV18 E6 promoted CC cell migration and invasion through activation of Wnt/β-catenin signaling. Furthermore, HPV18 rather than HPV16 was preferentially associated with the downregulation of MAGI3 and activation of the Wnt/β-catenin pathway in CC. These findings shed light on the mechanism that gives HPV18 its high carcinogenic potential in CC progression.
SUBMITTER: Yang Z
PROVIDER: S-EPMC8564337 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA