Supramolecular tessellations by the exo-wall interactions of pagoda[4]arene
Ontology highlight
ABSTRACT: Supramolecular tessellation has gained increasing interest in supramolecular chemistry for its structural aesthetics and potential applications in optics, magnetics and catalysis. In this work, a new kind of supramolecular tessellations (STs) have been fabricated by the exo-wall interactions of pagoda[4]arene (P4). ST with rhombic tiling pattern was first constructed by P4 itself through favorable π···π interactions between anthracene units of adjacent P4. Notably, various highly ordered STs with different tiling patterns have been fabricated based on exo-wall charge transfer interactions between electron-rich P4 and electron-deficient guests including 1,4-dinitrobenzene, terephthalonitrile and tetrafluoroterephthalonitrile. Interestingly, solvent modulation and guest selection played a crucial role in controlling the molecular arrangements in the co-crystal superstructures. This work not only proves that P4 is an excellent macrocyclic building block for the fabrication of various STs, but also provides a new perspective and opportunity for the design and construction of supramolecular two-dimensional organic materials. Supramolecular tessellation has gained increasing interest in supramolecular chemistry for its structural aesthetics and potential applications in optics, magnetics and catalysis. Here, the authors expand the examples of molecular building blocks for supramolecular tessellation and fabricate supramolecular tessellations using the exo-wall interactions of pagoda[4]arene.
SUBMITTER: Han X
PROVIDER: S-EPMC8568916 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA