Project description:Poor engraftment due to low cell doses restricts the usefulness of umbilical-cord-blood transplantation. We hypothesized that engraftment would be improved by transplanting cord blood that was expanded ex vivo with mesenchymal stromal cells.We studied engraftment results in 31 adults with hematologic cancers who received transplants of 2 cord-blood units, 1 of which contained cord blood that was expanded ex vivo in cocultures with allogeneic mesenchymal stromal cells. The results in these patients were compared with those in 80 historical controls who received 2 units of unmanipulated cord blood.Coculture with mesenchymal stromal cells led to an expansion of total nucleated cells by a median factor of 12.2 and of CD34+ cells by a median factor of 30.1. With transplantation of 1 unit each of expanded and unmanipulated cord blood, patients received a median of 8.34×10(7) total nucleated cells per kilogram of body weight and 1.81×10(6) CD34+ cells per kilogram--doses higher than in our previous transplantations of 2 units of unmanipulated cord blood. In patients in whom engraftment occurred, the median time to neutrophil engraftment was 15 days in the recipients of expanded cord blood, as compared with 24 days in controls who received unmanipulated cord blood only (P<0.001); the median time to platelet engraftment was 42 days and 49 days, respectively (P=0.03). On day 26, the cumulative incidence of neutrophil engraftment was 88% with expansion versus 53% without expansion (P<0.001); on day 60, the cumulative incidence of platelet engraftment was 71% and 31%, respectively (P<0.001).Transplantation of cord-blood cells expanded with mesenchymal stromal cells appeared to be safe and effective. Expanded cord blood in combination with unmanipulated cord blood significantly improved engraftment, as compared with unmanipulated cord blood only. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT00498316.).
Project description:Hematopoietic stem progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic "niche," a special 3-dimensional (3D) microenvironment that regulates HSPC self-renewal and multipotency. In this study, we evaluated a novel 3D in vitro culture system that uses components of the BM hematopoietic niche to expand umbilical cord blood (UCB) CD34+ cells. We developed this model using decellularized Wharton jelly matrix (DWJM) as an extracellular matrix (ECM) scaffold and human BM mesenchymal stromal cells (MSCs) as supporting niche cells. To assess the efficacy of this model in expanding CD34+ cells, we analyzed UCB CD34+ cells, following culture in DWJM, for proliferation, viability, self-renewal, multilineage differentiation, and transmigration capability. We found that DWJM significantly expanded UCB HSPC subset. It promoted UCB CD34+ cell quiescence, while maintaining their viability, differentiation potential with megakaryocytic differentiation bias, and clonogenic capacity. DWJM induced an increase in the frequency of c-kit+ cells, a population with enhanced self-renewal ability, and in CXCR4 expression in CD34+ cells, which enhanced their transmigration capability. The presence of BM MSCs in DWJM, however, impaired UCB CD34+ cell transmigration and suppressed CXCR4 expression. Transcriptome analysis indicated that DWJM upregulates a set of genes that are specifically involved in megakaryocytic differentiation, cell mobility, and BM homing. Collectively, our results indicate that the DWJM-based 3D culture system is a novel in vitro model that supports the proliferation of UCB CD34+ cells with enhanced transmigration potential, while maintaining their differentiation potential. Our findings shed light on the interplay between DWJM and BM MSCs in supporting the ex vivo culture of human UCB CD34+ cells for use in clinical transplantation.
Project description:OBJECTIVES:Stem cell factor (SCF) is considered as a commonly indispensable cytokine for proliferation of haematopoietic stem cells (HSCs), which is used in large dosages during ex vivo culture. The work presented here aimed to reduce the consumption of SCF by sustained release but still support cells proliferation and maintain the multipotency of HSCs. MATERIALS AND METHODS:Stem cell factor was physically encapsulated within a hyaluronic acid/gelatin double network (HGDN) hydrogel to achieve a slow release rate. CD34+ cells were cultured within the SCF-loaded HGDN hydrogel for 14 days. The cell number, phenotype and functional capacity were investigated after culture. RESULTS:The HGDN hydrogels had desirable properties and encapsulated SCF kept being released for more than 6 days. SCF remained the native bioactivity, and the proliferation of HSCs within the SCF-loaded HGDN hydrogel was not affected, although the consumption of SCF was only a quarter in comparison with the conventional culture. Moreover, CD34+ cells harvested from the SCF-loaded HGDN hydrogels generated more multipotent colony-forming units (CFU-GEMM). CONCLUSION:The data suggested that the SCF-loaded HGDN hydrogel could support ex vivo culture of HSCs, thus providing a cost-effective culture protocol for HSCs.
Project description:Although umbilical cord blood (UCB) hematopoietic stem cell transplantation (UCBT) has emerged as a promising haematological reconstitution therapy for leukemias and other related disorders, the insufficient UCB stem cell dosage still hinders better clinical outcomes. Previous research efforts, by focusing on ex vivo UCB expansion capabilities have sought to benefit from well-known mechanisms of self-renewal characteristics of UCB stem cells. However, the long-term (> 21 days) in vitro culture period and the low neutrophil recovery significantly reduce the transplantability of such ex vivo expanded UCB stem cells. To overcome the latter hurdles in this study, a post-thaw, short-term ex vivo expansion methodology of UCB mononuclear (UCB-MN) and CD34(+) cells has been established. Notably, such effort was achieved through pharmacological preconditioned of UCB cultures by filgrastim agent already used in the clinical setting. In crucial cell populations implicated in the promotion of functional engraftment, the progression of free survival rates (PFS), a marked increase of 6.65 to 9.34 fold for UCB-MN and 35 to 49 fold for CD34(+) cells has been noticed. Overall, these results indicate that transplantation of pharmacologically-preconditioned ex vivo expansion of UCB stem and progenitor cells keep high promise upon transplantation to enhance therapeutic potential in everyday clinical practice.
Project description:Here we present the single cell transcriptomes of human cord blood (CB) long-term hematopoietic stem cells (LT-HSCs) cultured in differentiation promoting medium over a time-course of 0, 6 24 or 72 h. A condition was included for LT-HSCs cultured with the CDK6 inhibitor Palbociclib for durations of 24 or 72 h. Palbociclib causes reversible cell cycle arrest in early G1 in these culture conditions. The objectives of this study were to understand the impact of cell culture on CB LT-HSCs in a time resolved manner and to investigate the role of cell cycle progression in driving this transcriptional change. In the present study we report that 72 h of culture causes extensive rewiring of the CB LT-HSC transcriptome and that changes are dynamically acquired over the time-course. We also report that cell cycle progression is not the main driver of transcriptional change in tested culture conditions.
Project description:Transplantation of hematopoietic stem cells (HSCs) is a well-established therapeutic approach for numerous disorders. HSCs are typically derived from bone marrow or peripheral blood after cytokine-induced mobilization. Umbilical cord blood (CB) represents an appealing alternative HSC source, but the small amounts of the individual CB units have limited its applications. The availability of strategies for safe ex vivo expansion of CB-derived HSCs (CB-HSCs) may allow to extend the use of these cells in adult patients and to avoid the risk of insufficient engraftment or delayed hematopoietic recovery.Here we describe a system for the ex vivo expansion of CB-HSCs based on their transient exposure to a recombinant TAT-BMI-1 chimeric protein. BMI-1 belongs to the Polycomb family of epigenetic modifiers and is recognized as a central regulator of HSC self-renewal. Recombinant TAT-BMI-1 produced in bacteria was able to enter the target cells via the HIV TAT-derived protein transduction peptide covalently attached to BMI-1, and conserved its biological activity. Treatment of CB-CD34+ cells for 3 days with repeated addition of 10 nM purified TAT-BMI-1 significantly enhanced total cell expansion as well as that of primitive hematopoietic progenitors in culture. Importantly, TAT-BMI-1-treated CB-CD34+ cells displayed a consistently higher rate of multi-lineage long-term repopulating activity in primary and secondary xenotransplants in immunocompromised mice. Thus, recombinant TAT-BMI-1 may represent a novel, effective reagent for ex vivo expansion of CB-HSC for therapeutic purposes.
Project description:Hematopoietic stem cells (HSCs) are a group of cells being produced during embryogenesis to preserve the blood system. They might also be differentiated to non-hematopoietic cells, including neural, cardiac and myogenic cells. Therefore, they have vast applications in the treatment of human disorders. Considering the restricted quantities of HSCs in the umbilical cord blood, inadequate mobilization of bone marrow stem cells, and absence of ethnic dissimilarity, ex vivo expansion of these HSCs is an applicable method for obtaining adequate amounts of HSCs. Several molecules such as NR-101, zVADfmk, zLLYfmk, Nicotinamide, Resveratrol, the Copper chelator TEPA, dmPGE2, Garcinol, and serotonin have been used in combination of cytokines to expand HSCs ex vivo. The most promising results have been obtained from cocktails that influence multipotency and self-renewal features from different pathways. In the current manuscript, we provide a concise summary of the effects of diverse small molecules on expansion of cord blood HSCs.
Project description:To date, different experimental strategies have been developed for the ex vivo expansion of human hematopoietic stem cells (HSCs) for clinical applications. However, differences in the genomic function of expanded HSCs under different culture systems remain unclear. In this study, we compared the gene expression profiles of HSCs in ex vivo expanded serum (10% FBS, fetal bovine serum) and serum-free culture systems and analyzed the molecular functions of differentially expressed genes using microarray chips. We identified 839 differentially expressed genes between the two culture systems. These genes were enriched in the TNF -regulated inflammatory pathway in an FBS culture system. In addition, the mRNA expression of CCL2 (C-C motif chemokine ligand 2), TNF (tumor necrosis factor) and FOS (FBJ murine osteosarcoma viral oncogene homolog) was validated by RT-qPCR. Our data revealed that ex vivo expansion of HSCs using the FBS culture system induces an inflammatory response and high CD38 expression, indicating that this system might activate an inflammatory pathway and induce expression of the cancer marker CD38 during ex vivo expansion of HSCs. This study provides a transcriptional profile and new insights into the genomic functions of HSCs under different expanded cultures.
Project description:Mesenchymal stem cells (MSCs) are known to support the characteristic properties of hematopoietic stem and progenitor cells (HSPCs) in the bone marrow hematopoietic microenvironment. MSCs are used in coculture systems as a feeder layer for the ex vivo expansion of umbilical cord blood (CB) to increase the relatively low number of HSPCs in CB. Findings increasingly suggest that MSC-derived microvesicles (MSC-MVs) play an important role in the biological functions of their parent cells. We speculate that MSC-MVs may recapitulate the hematopoiesis-supporting effects of their parent cells. In the current study, we found MSC-MVs containing microRNAs that are involved in the regulation of hematopoiesis. We also demonstrated that MSC-MVs could improve the expansion of CB-derived mononuclear cells and CD34(+) cells and generate a greater number of primitive progenitor cells in vitro. Additionally, when MSC-MVs were added to the CB-MSC coculture system, they could improve the hematopoiesis-supporting effects of MSCs. These findings highlight the role of MSC-MVs in the ex vivo expansion of CB, which may offer a promising therapeutic approach in CB transplantation.
Project description:Although hematopoietic stem cells (HSC) are the best characterized and the most clinically used adult stem cells, efforts are still needed to understand how to best ex vivo expand these cells. Here we present our unexpected finding that OCT4 is involved in the enhancement of cytokine-induced expansion capabilities of human cord blood (CB) HSC. Activation of OCT4 by Oct4-activating compound 1 (OAC1) in CB CD34(+) cells enhanced ex vivo expansion of HSC, as determined by a rigorously defined set of markers for human HSC, and in vivo short-term and long-term repopulating ability in NSG mice. Limiting dilution analysis revealed that OAC1 treatment resulted in 3.5-fold increase in the number of SCID repopulating cells (SRCs) compared with that in day 0 uncultured CD34(+) cells and 6.3-fold increase compared with that in cells treated with control vehicle. Hematopoietic progenitor cells, as assessed by in vitro colony formation, were also enhanced. Furthermore, we showed that OAC1 treatment led to OCT4-mediated upregulation of HOXB4. Consistently, siRNA-mediated knockdown of HOXB4 expression suppressed effects of OAC1 on ex vivo expansion of HSC. Our study has identified the OCT4-HOXB4 axis in ex vivo expansion of human CB HSC.