Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials
Ontology highlight
ABSTRACT: While alloy design has practically shown an efficient strategy to mediate two seemingly conflicted performances of writing speed and data retention in phase-change memory, the detailed kinetic pathway of alloy-tuned crystallization is still unclear. Here, we propose hierarchical melt and coordinate bond strategies to solve them, where the former stabilizes a medium-range crystal-like region and the latter provides a rule to stabilize amorphous. The Er0.52Sb2Te3 compound we designed achieves writing speed of 3.2 ns and ten-year data retention of 161 °C. We provide a direct atomic-level evidence that two neighbor Er atoms stabilize a medium-range crystal-like region, acting as a precursor to accelerate crystallization; meanwhile, the stabilized amorphous originates from the formation of coordinate bonds by sharing lone-pair electrons of chalcogenide atoms with the empty 5d orbitals of Er atoms. The two rules pave the way for the development of storage-class memory with comprehensive performance to achieve next technological node. In phase-change memory, writing speed and data retention are two seemingly conflicting performances. Here the authors report hierarchical melt and coordinate bond strategies to stabilize a medium-range crystal-like region and amorphous region, respectively.
SUBMITTER: Zhao J
PROVIDER: S-EPMC8578292 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA