Unknown

Dataset Information

0

GI-SleepNet: A Highly Versatile Image-Based Sleep Classification Using a Deep Learning Algorithm.


ABSTRACT: Sleep-stage classification is essential for sleep research. Various automatic judgment programs, including deep learning algorithms using artificial intelligence (AI), have been developed, but have limitations with regard to data format compatibility, human interpretability, cost, and technical requirements. We developed a novel program called GI-SleepNet, generative adversarial network (GAN)-assisted image-based sleep staging for mice that is accurate, versatile, compact, and easy to use. In this program, electroencephalogram and electromyography data are first visualized as images, and then classified into three stages (wake, NREM, and REM) by a supervised image learning algorithm. To increase its accuracy, we adopted GAN and artificially generated fake REM sleep data to equalize the number of stages. This resulted in improved accuracy, and as little as one mouse's data yielded significant accuracy. Due to its image-based nature, the program is easy to apply to data of different formats, different species of animals, and even outside sleep research. Image data can be easily understood; thus, confirmation by experts is easily obtained, even when there are prediction anomalies. As deep learning in image processing is one of the leading fields in AI, numerous algorithms are also available.

SUBMITTER: Gao T 

PROVIDER: S-EPMC8628800 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10703013 | biostudies-literature
| S-EPMC9117994 | biostudies-literature
| S-EPMC7848437 | biostudies-literature
| S-EPMC10309999 | biostudies-literature
| S-EPMC11355344 | biostudies-literature
| S-EPMC8890789 | biostudies-literature
| S-EPMC6485748 | biostudies-literature
| S-EPMC7393510 | biostudies-literature
| S-EPMC7751135 | biostudies-literature
| S-EPMC9600639 | biostudies-literature