Project description:Currently, only limited knowledge is available about the genetic diversity of the hypervirulent clonal complex 1 (CC1) of Listeria monocytogenes from Asia. In this study, we report the draft genome sequence of an L. monocytogenes CC1 strain (SNU3) from Seoul, South Korea.
Project description:IntroductionThis study aimed to determine the prevalence and virulome of Listeria in fresh produce distributed in urban communities.MethodsA total of 432 fresh produce samples were collected from farmer's markets in Michigan and West Virginia, USA, resulting in 109 pooled samples. Listeria spp. were isolated and L. monocytogenes was subjected to genoserogrouping by PCR and genotyping by pulsed-field gel electrophoresis (PFGE). Multi-locus sequence typing (MLST) and core-genome multi-locus sequence typing (cgMLST) were conducted for clonal identification.ResultsForty-eight of 109 samples (44.0%) were contaminated with Listeria spp. L. monocytogenes serotype 1/2a and 4b were recovered from radishes, potatoes, and romaine lettuce. Four clonal complexes (CC) were identified and included hypervirulent CC1 (ST1) and CC4 (ST219) of lineage I as well as CC7 (ST7) and CC11 (ST451) of lineage II. Clones CC4 and CC7 were present in the same romaine lettuce sample. CC1 carried Listeria pathogenicity island LIPI-1 and LIPI-3 whereas CC4 contained LIPI-1, LIPI-3, and LIPI-4. CC7 and CC11 had LIPI-1 only.DiscussionDue to previous implication in outbreaks, L. monocytogenes hypervirulent clones in fresh produce pose a public health concern in urban communities.
Project description:The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how "epidemic clones" should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the "epidemic clone" denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space.
Project description:Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection.
Project description:The sequence of the trimethoprim resistance gene of the 3.7-kb plasmid (pIP823) that confers high-level resistance (MIC, 1,024 microg/ml) to Listeria monocytogenes BM4293 was determined. The gene was identical to dfrD recently detected in Staphylococcus haemolyticus MUR313. The corresponding protein, S2DHFR, represents the second class of high-level trimethoprim-resistant dihydrofolate reductase identified in gram-positive bacteria. We propose that trimethoprim resistance in L. monocytogenes BM4293 could originate in staphylococci.
Project description:Listeria monocytogenes is a facultative intracellular bacterial pathogen that can infect the placenta, a chimeric organ made of maternal and fetal cells. Extravillous trophoblasts (EVT) are specialized fetal cells that invade the uterine implantation site, where they come into direct contact with maternal cells. We have shown previously that EVT are the preferred site of initial placental infection. In this report, we infected primary human EVT with L. monocytogenes. EVT eliminated ?80% of intracellular bacteria over 24-hours. Bacteria were unable to escape into the cytoplasm and remained confined to vacuolar compartments that became acidified and co-localized with LAMP1, consistent with bacterial degradation in lysosomes. In human placental organ cultures bacterial vacuolar escape rates differed between specific trophoblast subpopulations. The most invasive EVT-those that would be in direct contact with maternal cells in vivo-had lower escape rates than trophoblasts that were surrounded by fetal cells and tissues. Our results suggest that EVT present a bottleneck in the spread of L. monocytogenes from mother to fetus by inhibiting vacuolar escape, and thus intracellular bacterial growth. However, if L. monocytogenes is able to spread beyond EVT it can find a more hospitable environment. Our results elucidate a novel aspect of the maternal-fetal barrier.
Project description:The bacterial pathogen Listeria monocytogenes uses actin-based motility to spread from infected human cells to surrounding healthy cells. Cell-cell spread involves the formation of thin extensions of the host plasma membrane ('protrusions') containing motile bacteria. In cultured enterocytes, the Listeria protein InlC promotes protrusion formation by binding and antagonizing the human scaffolding protein Tuba. Tuba is a known activator of the GTPase Cdc42. In this work, we demonstrate an important role for Cdc42 in controlling Listeria spread. Infection of the enterocyte cell line Caco-2 BBE1 induced a decrease in the level of Cdc42-GTP, indicating that Listeria downregulates this GTPase. Genetic data involving RNA interference indicated that bacterial impairment of Cdc42 may involve inhibition of Tuba. Experiments with dominant negative and constitutively activated alleles of Cdc42 demonstrated that the ability to inactivate Cdc42 is required for efficient protrusion formation by Listeria. Taken together, these findings indicate a novel mechanism of bacterial spread involving pathogen-induced downregulation of host Cdc42.
Project description:Listeria monocytogenes is a food-borne pathogen, typically affecting the elderly, immunocompromised patients and pregnant women. The aim of this study was to determine the population structure of L. monocytogenes clonal complex 1 (CC1) in the UK and describe the genomic epidemiology of this clinically significant CC. We interrogated a working dataset of 4073 sequences of L. monocytogenes isolated between January 2015 and December 2020 from human clinical specimens, food and/or food-production environments. A minimum spanning tree was reconstructed to determine the population structure of L. monocytogenes in the UK. Subsequent analysis focused on L. monocytogenes CC1, as the cause of the highest proportion of invasive listeriosis in humans. Sequencing data was integrated with metadata on food and environmental isolates, and information from patient questionnaires, including age, sex and clinical outcomes. All isolates either belonged to lineage I (n=1299/4073, 32%) or lineage II (n=2774/4073, 68%), with clinical isolates from human cases more likely to belong to lineage I (n=546/928, 59%) and food isolates more likely to belong to lineage II (n=2352/3067, 77%). Of the four largest CCs, CC1 (n=237) had the highest proportion of isolates from human cases of disease (CC1 n=160/237, 67.5 %; CC121 n=13/843, 2 %; CC9 n=53/360, 15 %; CC2 n=69/339, 20%). Within CC1, most cases were female (n=95/160, 59%, P=0.01771) and the highest proportion of cases were in people >60 years old (39/95, 41%, P=1.314×10-6) with a high number of them aged 20-39 years old (n=35/95, 37%) most linked to pregnancy-related listeriosis (n=29/35, 83%). Most of the male cases were in men aged over 60 years old (40/65, 62%), and most of the fatal cases in both males and females were identified in this age group (42/55, 76%). Phylogenetic analysis revealed 23 5 SNP single linkage clusters comprising 80/237 (34 %) isolates with cluster sizes ranging from 2 to 19. Five 5 SNP clusters comprised isolates from human cases and an implicated food item. Expanding the analysis to 25 SNP single linkage clusters resolved an additional two clusters linking human cases to a potential food vehicle. Analysis of demographic and clinical outcome data identified CC1 as a clinically significant cause of invasive listeriosis in the elderly population and in women of child-bearing age. Phylogenetic analysis revealed the population structure of CC1 in the UK comprised small, sparsely populated genomic clusters. Only clusters containing isolates from an implicated food vehicle, or food processing or farming environments, were resolved, emphasizing the need for clinical, food and animal-health agencies to share sequencing data in real time, and the importance of a One Health approach to public-health surveillance of listeriosis.
Project description:Listeria monocytogenes (LM) is one of the most serious foodborne pathogens. Listeriosis, the disease caused by LM infection, has drawn attention worldwide because of its high hospitalization and mortality rates. Linalool is a vital constituent found in many essential oils; our previous studies have proved that linalool exhibits strong anti-Listeria activity. In this study, iTRAQ-based quantitative proteomics analysis was performed to explore the response of LM exposed to linalool, and to unravel the mode of action and drug targets of linalool against LM. A total of 445 differentially expressed proteins (DEPs) were screened out, including 211 up-regulated and 234 down-regulated proteins which participated in different biological functions and pathways. Thirty-one significantly enriched gene ontology (GO) functional categories were obtained, including 12 categories in "Biological Process", 10 categories in "Cell Component", and 9 categories in "Molecular Function". Sixty significantly enriched biological pathways were classified, including 6 pathways in "Cell Process", 6 pathways in "Environmental Information Processing", 3 pathways in "Human Disease", 40 pathways in "Metabolism", and 2 pathways in "Organic System". GO and Kyoto Encyclopedia of Genes (KEGG) enrichment analysis together with flow cytometry data implied that cell membranes, cell walls, nucleoids, and ribosomes might be the targets of linalool against LM. Our study provides good evidence for the proteomic analysis of bacteria, especially LM, exposed to antibacterial agents. Further, those drug targets discovered by proteomic analysis can provide theoretical support for the development of new drugs against LM.
Project description:Although a complete pathway of lipoic acid metabolism has been established in Escherichia coli, lipoic acid metabolism in other bacteria is more complex and incompletely understood. Listeria monocytogenes has been shown to utilize two lipoate-protein ligases for lipoic acid scavenging, whereas only one of the ligases can function in utilization of host-derived lipoic acid-modified peptides. We report that lipoic acid scavenging requires not only ligation of lipoic acid but also a lipoyl relay pathway in which an amidotransferase transfers lipoyl groups to the enzyme complexes that require the cofactor for activity. In addition, we provide evidence for a new lipoamidase activity that could allow utilization of lipoyl peptides by lipoate-protein ligase. These data support a model of an expanded, three-enzyme pathway for lipoic acid scavenging that seems widespread in the Firmicutes phylum of bacteria.