One-Pot Synthesis of Long Rutile TiO2 Nanorods and Their Photocatalytic Activity for O2 Evolution: Comparison with Near-Spherical Nanoparticles.
Ontology highlight
ABSTRACT: Rutile TiO2 nanorods with lengths greater than 600 nm and aspect ratios greater than ca. 16 were synthesized through a one-pot hydrothermal method using lactic acid (LA) as a structure-directing agent. Under the hydrothermal treatment at 200 °C, the LA concentration higher than 1.6 mol dm-3 and the hydrothermal time of 72 h were needed to obtain 100% rutile nanorods. The length and the width of the nanorods increased with the increasing LA concentration. The photocatalytic activity of the synthesized nanorods was evaluated for the oxygen evolution in aqueous AgNO3 solutions under ultraviolet irradiation. Calcination of the synthesized nanorods at 400 °C was required to decompose residual organic compounds on the surface and improve the oxygen evolution. The highest oxygen evolution rate was obtained with the nanorods after being calcined at 800 °C. It is worth noting that the nanorods retained their shape (aspect ratio of 8.8) at 800 °C. Selected area electron diffraction patterns indicated that the side or the end surface of the nanorods was attributable to the {110} or {111} facet, respectively. Deposition of Pt or PbO2 on the nanorods revealed that the {110} or {111} facet acted as reductive or oxidative sites. For comparison, near-spherical TiO2 nanoparticles were synthesized by a sol-gel method. Furthermore, using glycolic acid as the structure-directing agent, we synthesized small rutile TiO2 nanorods (aspect ratio of 9) and changed the shape to near-spherical (aspect ratio of 1.3) by calcining at 800 °C. Time-resolved diffuse reflectance spectra were measured to determine the lifetime of the photogenerated electrons. The photocatalytic activity of the nanorods was much lower than that of the near-spherical TiO2 nanoparticles. However, the nanorods synthesized with LA are useful as catalyst support or platforms for various applications because of their unique morphology and high heat resistance.
SUBMITTER: Yamazaki S
PROVIDER: S-EPMC8637597 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA