Project description:The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.
Project description:The master circadian clock generates 24-hour rhythms to orchestrate daily behavior, even running freely under constant conditions. Traditionally, the master clock is considered self-sufficient in sustaining free-running timekeeping via its cell-autonomous molecular clocks and interneuronal communications within the circadian neural network. Here, we find a set of bona fide ultradian oscillators in the Drosophila brain that support free-running timekeeping, despite being located outside the master clock circuit and lacking clock gene expression. These extra-clock electrical oscillators (xCEOs) generate cell-autonomous ultradian bursts, pacing widespread burst firing and promoting rhythmic resting membrane potentials in clock neurons via parallel monosynaptic connections. Silencing xCEOs disrupts daily electrical rhythms in clock neurons and impairs cycling of neuropeptide pigment dispersing factor, leading to the loss of free-running locomotor rhythms. Together, we conclude that the master clock is not self-sufficient to sustain free-running behavior rhythms but requires additional endogenous inputs to the clock from the extra-clock ultradian brain oscillators.
Project description:Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping. We find that the cost of synthesizing proteins with particular waveforms can be substantially reduced by rhythmic protein half-lives over time, as supported by previous plant and mammalian data, as well as our own seedling experiment. We also find that previously enigmatic, cyclic expression of positive arm components within the mammalian and insect clocks allows both a broad range of peak time differences between protein waveforms and the symmetries of the waveforms about the peak times. Such various peak-time differences may facilitate tissue-specific or developmental stage-specific multicellular processes. Our waveform-guided approach can be extended to various biological oscillators, including cell-cycle and synthetic genetic oscillators.
Project description:Diurnal oscillation of intracellular redox potential is known to couple metabolism with the circadian clock, yet the responsible mechanisms are not well understood. We show here that chemical activation of NRF2 modifies circadian gene expression and rhythmicity, with phenotypes similar to genetic NRF2 activation. Loss of Nrf2 function in mouse fibroblasts, hepatocytes and liver also altered circadian rhythms, suggesting that NRF2 stoichiometry and/or timing of expression are important to timekeeping in some cells. Consistent with this concept, activation of NRF2 at a circadian time corresponding to the peak generation of endogenous oxidative signals resulted in NRF2-dependent reinforcement of circadian amplitude. In hepatocytes, activated NRF2 bound specific enhancer regions of the core clock repressor gene Cry2, increased Cry2 expression and repressed CLOCK/BMAL1-regulated E-box transcription. Together these data indicate that NRF2 and clock comprise an interlocking loop that integrates cellular redox signals into tissue-specific circadian timekeeping.
Project description:The non-canonical initiation factor DENR promotes translation reinitiation on mRNAs harbouring upstream open reading frames (uORFs). Moreover, DENR depletion shortens circadian period in mouse fibroblasts, suggesting involvement of uORF usage and reinitiation in clock regulation. To identify DENR-regulated translation events transcriptome-wide and, in particular, specific core clock transcripts affected by this mechanism, we have used ribosome profiling in DENR-deficient NIH3T3 cells. We uncovered 240 transcripts with altered translation rate, and used linear regression analysis to extract 5' UTR features predictive of DENR dependence. Among core clock genes, we identified Clock as a DENR target. Using Clock 5' UTR mutants, we mapped the specific uORF through which DENR acts to regulate CLOCK protein biosynthesis. Notably, these experiments revealed an alternative downstream start codon, likely representing the bona fide CLOCK N-terminus. Our findings provide insights into uORF-mediated translational regulation that can regulate the mammalian circadian clock and gene expression at large.
Project description:Circadian rhythms are a pervasive property of mammalian cells, tissues and behaviour, ensuring physiological adaptation to solar time. Models of cellular timekeeping revolve around transcriptional feedback repression, whereby CLOCK and BMAL1 activate the expression of PERIOD (PER) and CRYPTOCHROME (CRY), which in turn repress CLOCK/BMAL1 activity. CRY proteins are therefore considered essential components of the cellular clock mechanism, supported by behavioural arrhythmicity of CRY-deficient (CKO) mice under constant conditions. Challenging this interpretation, we find locomotor rhythms in adult CKO mice under specific environmental conditions and circadian rhythms in cellular PER2 levels when CRY is absent. CRY-less oscillations are variable in their expression and have shorter periods than wild-type controls. Importantly, we find classic circadian hallmarks such as temperature compensation and period determination by CK1δ/ε activity to be maintained. In the absence of CRY-mediated feedback repression and rhythmic Per2 transcription, PER2 protein rhythms are sustained for several cycles, accompanied by circadian variation in protein stability. We suggest that, whereas circadian transcriptional feedback imparts robustness and functionality onto biological clocks, the core timekeeping mechanism is post-translational.
Project description:Circadian (?24 h) timekeeping is essential for the lives of many organisms. To understand the biochemical mechanisms of this timekeeping, we have developed a detailed mathematical model of the mammalian circadian clock. Our model can accurately predict diverse experimental data including the phenotypes of mutations or knockdown of clock genes as well as the time courses and relative expression of clock transcripts and proteins. Using this model, we show how a universal motif of circadian timekeeping, where repressors tightly bind activators rather than directly binding to DNA, can generate oscillations when activators and repressors are in stoichiometric balance. Furthermore, we find that an additional slow negative feedback loop preserves this stoichiometric balance and maintains timekeeping with a fixed period. The role of this mechanism in generating robust rhythms is validated by analysis of a simple and general model and a previous model of the Drosophila circadian clock. We propose a double-negative feedback loop design for biological clocks whose period needs to be tightly regulated even with large changes in gene dosage.
Project description:The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway.
Project description:Genetically encoded biological clocks are found broadly throughout life on Earth, where they generate circadian (about a day) rhythms that synchronize physiology and behavior with the daily light/dark cycle. Although the genetic networks that give rise to circadian timing are now fairly well established, our understanding of how the proteins that constitute the molecular 'cogs' of this biological clock regulate the intrinsic timing, or period, of circadian rhythms has lagged behind. New studies probing the biochemical and structural basis of clock protein function are beginning to reveal how assemblies of dedicated clock proteins form and evolve through post-translational regulation to generate circadian rhythms. This review will highlight some recent advances providing important insight into the molecular mechanisms of period control in mammalian clocks with an emphasis on structural analyses related to CK1-dependent control of PER stability.
Project description:Entrainment is characterized by phase response curves (PRCs), which provide a summary of responses to perturbations at each circadian phase. The synchronization of mammalian circadian clocks is accomplished through the receipt of a variety of inputs from both internal and external time cues. A comprehensive comparison of PRCs for various stimuli in each tissue is required. Herein, we demonstrate that PRCs in mammalian cells can be characterized using a recently developed estimation method based on singularity response (SR), which represents the response of desynchronized cellular clocks. We confirmed that PRCs can be reconstructed using single SR measurements and quantified response properties for various stimuli in several cell lines. SR analysis reveals that the phase and amplitude after resetting are distinguishable among stimuli. SRs in tissue slice cultures reveal tissue-specific entrainment properties. These results demonstrate that SRs can be employed to unveil entrainment mechanisms with diverse stimuli in multiscale mammalian clocks.