Project description:SARS-CoV-2 viral load and detection of infectious virus in the respiratory tract are the two key parameters for estimating infectiousness. As shedding of infectious virus is required for onward transmission, understanding shedding characteristics is relevant for public health interventions. Viral shedding is influenced by biological characteristics of the virus, host factors and pre-existing immunity (previous infection or vaccination) of the infected individual. Although the process of human-to-human transmission is multifactorial, viral load substantially contributed to human-to-human transmission, with higher viral load posing a greater risk for onward transmission. Emerging SARS-CoV-2 variants of concern have further complicated the picture of virus shedding. As underlying immunity in the population through previous infection, vaccination or a combination of both has rapidly increased on a global scale after almost 3 years of the pandemic, viral shedding patterns have become more distinct from those of ancestral SARS-CoV-2. Understanding the factors and mechanisms that influence infectious virus shedding and the period during which individuals infected with SARS-CoV-2 are contagious is crucial to guide public health measures and limit transmission. Furthermore, diagnostic tools to demonstrate the presence of infectious virus from routine diagnostic specimens are needed.
Project description:OBJECTIVES:To summarise the evidence on the detection pattern and viral load of SARS-CoV-2 over the course of an infection (including any asymptomatic or pre-symptomatic phase), and the duration of infectivity. METHODS:A systematic literature search was undertaken in PubMed, Europe PubMed Central and EMBASE from 30 December 2019 to 12 May 2020. RESULTS:We identified 113 studies conducted in 17 countries. The evidence from upper respiratory tract samples suggests that the viral load of SARS-CoV-2 peaks around symptom onset or a few days thereafter, and becomes undetectable about two weeks after symptom onset; however, viral loads from sputum samples may be higher, peak later and persist for longer. There is evidence of prolonged virus detection in stool samples, with unclear clinical significance. No study was found that definitively measured the duration of infectivity; however, patients may not be infectious for the entire duration of virus detection, as the presence of viral ribonucleic acid may not represent transmissible live virus. CONCLUSION:There is a relatively consistent trajectory of SARS-CoV-2 viral load over the course of COVID-19 from respiratory tract samples, however the duration of infectivity remains uncertain.
Project description:BackgroundInternational travel poses the risk of importing SARS-CoV-2 infections and introducing new viral variants into the country of destination. Established measures include mandatory quarantine with the opportunity to abbreviate it with a negative rapid antigen test (RAT).MethodsA total of 1,488 returnees were tested for SARS-CoV-2 with both PCR and RAT no earlier than 5 days after arrival. We assessed the sensitivity and specificity of the RAT. Positive samples were evaluated for infectivity in vitro in a cell culture outgrowth assay. We tracked if participants who tested negative were reported positive within 2 weeks of the initial test.ResultsPotential infectiousness was determined based on symptom onset analysis, resulting in a sensitivity of the antigen test of 89% in terms of infectivity. The specificity was 100%. All positive outgrowth assays were preceded by a positive RAT, indicating that all participants with proven in vitro infectivity were correctly identified. None of the negative participants tested positive during the follow-up.ConclusionsRAT no earlier than the 5th day after arrival was a reliable method for detecting infectious travellers and can be recommended as an appropriate method for managing SARS-CoV-2 travel restrictions. Compliance to the regulations and a high standard of test quality must be ensured.
Project description:The COVID-19 pandemic interrupted routine care for individuals living with HIV, putting them at risk of virologic failure and HIV-associated illness. Often this population is at high risk for exposure to SARS-CoV-2 infection, and once infected, for severe disease. Therefore, close monitoring of HIV plasma viral load (VL) and screening for SARS-CoV-2 infection are needed. We developed a non-proprietary method to isolate RNA from plasma, nasal secretions (NS), or both. The extracted RNA is then submitted to RT-qPCR to estimate the VL and classify HIV/SARS-CoV-2 status (i.e., HIV virologic failure or suppressed; SARS-CoV-2 as positive, presumptive positive, negative, or indeterminate). In contrived samples, the in-house RNA extraction workflow achieved a detection limit of 200-copies per mL for HIV RNA in plasma and 100-copies per mL for SARS-CoV-2 RNA in NS. Similar detection limits were observed for HIV and SARS-CoV-2 in pooled plasma/NS contrived samples. When comparing in-house with standard extraction methods, we found high agreement (>0.91) between input and measured RNA copies for HIV LTR in contrived plasma; SARS-CoV-2 N1/N2 in contrived NS; and LTR, N1, and N2 in pooled plasma/NS samples. We further evaluated this workflow on 133 clinical specimens: 40 plasma specimens (30 HIV-positive), 67 NS specimens (31 SARS-CoV-2-positive), and 26 combined plasma/NS specimens (26 HIV-positive with 10 SARS-CoV-2-positive), and compared the results obtained using the in-house RNA extraction to those using a commercial kit (standard extraction method). The in-house extraction and standard extraction of clinical specimens were positively correlated: plasma HIV VL (R2 of 0.81) and NS SARS-CoV-2 VL (R2 of 0.95 and 0.99 for N1 and N2 genes, respectively); and pooled plasma/NS HIV VL (R2 of 0.71) and SARS-CoV-2 VL (R2 of 1 both for N1 and N2 genes). Our low-cost molecular test workflow ($1.85 per pooled sample extraction) for HIV RNA and SARS-CoV-2 RNA could serve as an alternative to current standard assays ($12 per pooled sample extraction) for laboratories in low-resource settings.
Project description:Large-scale screening for SARS-CoV-2 infection is an important tool for epidemic prevention and control. The appearance of new variants associated with specific mutations can call into question the effectiveness of rapid diagnostic tests (RDTs) deployed massively at national and international levels. We compared the clinical and virological characteristics of individuals infected by Delta or Omicron variants to assess which factors were associated with a reduced performance of RDT. A commercially available RDT as well as the evaluation of the viral load (VL) and the detection of replicate intermediates (RIs) were carried out retrospectively on positive SARS-CoV-2 nasopharyngeal specimens from health care workers of the Pitié-Salpêtrière Hospital infected by the Delta or Omicron variant between July 2021 and January 2022. Of the 205 samples analyzed (104 from individuals infected with Delta and 101 with Omicron), 176 were analyzed by RDT and 200 by RT-PCR for VL and RIs. The sensitivity of the TDR for Omicron was significantly lower than that observed for Delta (53.8% versus 74.7%, respectively, P < 0.01). Moreover, the Delta VL was significantly higher than that measured for Omicron (median Ct 21.2 versus 24.1, respectively, P < 0.01) and associated with the positivity of the RDT in multivariate analysis. We demonstrate a lower RDT sensitivity associated with a lower VL at the time of diagnosis on Omicron-infected individuals in comparison to those infected with the Delta variant. This RDT lower sensitivity should be taken into account in the large-scale screening strategy and in particular in case of strong suspicion of infection where testing should be repeated. IMPORTANCE Previous reports have shown a variability in the diagnostic performance of RDTs. In the era of SARS-CoV-2 variants and the use of RDT, mutation associated with these variants could affect the test performance. We evaluate the sensitivity of the RDT Panbio COVID-19 Ag (Abbott) with two variants of concern (VOC), the Delta and Omicron variants. In order to investigate whether clinical characteristics or virological characteristics can affect this sensitivity, we collected clinical information and performed a specific RT-PCR that detected the RIs as a marker of the viral replication and viral cycle stage. Our results showed that Omicron was less detected than the Delta variant. A lower viral load of Omicron variant in comparison to Delta variant explained this decreased sensitivity, even if they are at the same stage of the disease and the viral cycle and should be taken into account with the use of RDT as diagnostic tool.
Project description:Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.
Project description:To determine viral dynamics in Omicron breakthrough infections, we measured severe acute respiratory syndrome coronavirus 2 RNA in 206 double-vaccinated or boostered individuals. During the first 3 days following the onset of symptoms, viral loads were significantly higher (cycle threshold [Ct], 21.76) in vaccinated compared to boostered (Ct, 23.14) individuals (P = .029). However, by performing a longitudinal analysis on 32 individuals over 14 days, no difference in the viral load trajectory was observed between double-vaccinated and boostered patients. Our results indicate that booster immunization results in a reduction in detectable viral loads without significantly changing viral load dynamics over time.