Project description:The BTB/POZ family of proteins is widespread in plants and animals, playing important roles in development, growth, metabolism, and environmental responses. Although members of the expanded BTB/POZ gene family (OsBTB) have been identified in cultivated rice (Oryza sativa), their conservation, novelty, and potential applications for allele mining in O. rufipogon, the direct progenitor of O. sativa ssp. japonica and potential wide-introgression donor, are yet to be explored. This study describes an analysis of 110 BTB/POZ encoding gene loci (OrBTB) across the genome of O. rufipogon as outcomes of tandem duplication events. Phylogenetic grouping of duplicated OrBTB genes was supported by the analysis of gene sequences and protein domain architecture, shedding some light on their evolution and functional divergence. The O. rufipogon genome encodes nine novel BTB/POZ genes with orthologs in its distant cousins in the family Poaceae (Sorghum bicolor, Brachypodium distachyon), but such orthologs appeared to have been lost in its domesticated descendant, O. sativa ssp. japonica. Comparative sequence analysis and structure comparisons of novel OrBTB genes revealed that diverged upstream regulatory sequences and regulon restructuring are the key features of the evolution of this large gene family. Novel genes from the wild progenitor serve as a reservoir of potential new alleles that can bring novel functions to cultivars when introgressed by wide hybridization. This study establishes a foundation for hypothesis-driven functional genomic studies and their applications for widening the genetic base of rice cultivars through the introgression of novel genes or alleles from the exotic gene pool.
Project description:BCL6 is a transcriptional repressor. Two domains of the protein, the N-terminal BTB-POZ domain and the RD2 domain are responsible for recruitment of co-repressor molecules and histone deacetylases. The BTB-POZ domain is found in a large and diverse range of proteins that play important roles in development, homeostasis and neoplasia. Crystal structures of several BTB-POZ domains, including BCL6 have been determined. The BTB-POZ domain of BCL6 not only mediates dimerisation but is also responsible for recruitment of co-repressors such as SMRT, NCOR and BCOR. Interestingly both SMRT and BCOR bind to the same site within the BCL6 BTB-POZ domain despite having very different primary sequences. Since both peptides and small molecules have been shown to bind to the co-repressor binding site it would suggest that the BTB_POZ domain is a suitable target for drug discovery. Here we report near complete backbone 15N, 13C and 1H assignments for the BTB-POZ domain of BCL6 to assist in the analysis of binding modes for small molecules.
Project description:POZ/BTB domains are widespread modules detected in a variety of different biological contexts. Here, we report a biophysical characterization of the POZ/BTB of KCTD6, a protein that is involved in the turnover of the muscle small ankyrin-1 isoform 5 and, in combination with KCTD11, in the ubiquitination and degradation of HDAC1. The analyses show that the domain is a tetramer made up by subunits with the expected ? /? structure. A detailed investigation of its stability, carried out in comparison with the homologous pentameric POZ/BTB domain isolated from KCTD5, highlights a number of interesting features, which are shared by the two domains despite their different organization. Their thermal/chemical denaturation curves are characterized by a single and sharp inflection point, suggesting that the denaturation of the two domains is a cooperative two-state process. Furthermore, both domains present a significant content of secondary structure in their denatured state and a reversible denaturation process. We suggest that the ability of these domains to fold and unfold reversibly, a property that is somewhat unexpected for these oligomeric assemblies, may have important implications for their biological function. Indeed, these properties likely favor the formation of heteromeric associations that may be essential for the intricate regulation of the processes in which these proteins are involved.
Project description:Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP-TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity.
Project description:Phytophthora sojae is a destructive pathogen of soybean [Glycine max (L.) Merr.] which causes stem and root rot on soybean plants worldwide. However, the pathogenesis and molecular mechanism of plant defence responses against P. sojae are largely unclear. Herein, we document the underlying mechanisms and function of a novel BTB/POZ protein, GmBTB/POZ, which contains a BTB/POZ domain found in certain animal transcriptional regulators, in host soybean plants in response to P. sojae. It is located in the cell nucleus and is transcriptionally up-regulated by P. sojae. Overexpression of GmBTB/POZ in soybean resulted in enhanced resistance to P. sojae. The activities and expression levels of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants were significantly higher in GmBTB/POZ-overexpressing (GmBTB/POZ-OE) transgenic soybean plants than in wild-type (WT) plants treated with sterile water or infected with P. sojae. The transcript levels of defence-associated genes were also higher in overexpressing plants than in WT on infection. Moreover, salicylic acid (SA) levels and the transcript levels of SA biosynthesis-related genes were markedly higher in GmBTB/POZ-OE transgenic soybean than in WT, but there were almost no differences in jasmonic acid (JA) levels or JA biosynthesis-related gene expression between GmBTB/POZ-OE and WT soybean lines. Furthermore, exogenous SA application induced the expression of GmBTB/POZ and inhibited the increase in P. sojae biomass in both WT and GmBTB/POZ-OE transgenic soybean plants. Taken together, these results suggest that GmBTB/POZ plays a positive role in P. sojae resistance and the defence response in soybean via a process that might be dependent on SA.
Project description:Lysosomes are important for proper functioning of the retinal pigment epithelial (RPE) cells. RPE cells have a daily burden of phagocytosis of photoreceptor outer segments (POS) and also degrade cellular waste by autophagy. Here, we identified the role of Zinc-finger protein with KRAB and SCAN domains 3 (ZKSCAN3) in co-ordinate regulation of lysosomal function and autophagy in the RPE. Our studies show that in the RPE, ZKSCAN3 is predominantly nuclear in healthy cells and its nuclear expression is reduced upon nutrient deprivation. siRNA-mediated knockdown of ZKSCAN3 results in de-repression of some of the ZKSCAN3 target genes. Knockdown of ZKSCAN3 also resulted in an induction in autophagy flux, increase in the number of functional lysosomes and accompanied activation of lysosomal cathepsin B activity in ARPE-19 cells. We also demonstrated that inhibition of P38 mitogen-activated protein kinase (MAPK) retains ZKSCAN3 in the nucleus in nutrient-deprived cells. In summary, our studies elucidated the role of ZKSCAN3 as a transcriptional repressor of autophagy and lysosomal function in the RPE.
Project description:p120(ctn) is an Armadillo repeat domain protein with structural similarity to the cell adhesion cofactors beta-catenin and plakoglobin. All three proteins interact directly with the cytoplasmic domain of the transmembrane cell adhesion molecule E-cadherin; beta-catenin and plakoglobin bind a carboxy-terminal region in a mutually exclusive manner, while p120 binds the juxtamembrane region. Unlike beta-catenin and plakoglobin, p120 does not interact with alpha-catenin, the tumor suppressor adenomatous polyposis coli (APC), or the transcription factor Lef-1, suggesting that it has unique binding partners and plays a distinct role in the cadherin-catenin complex. Using p120 as bait, we conducted a yeast two-hybrid screen and identified a novel transcription factor which we named Kaiso. Kaiso's deduced amino acid sequence revealed an amino-terminal BTB/POZ protein-protein interaction domain and three carboxy-terminal zinc fingers of the C2H2 DNA-binding type. Kaiso thus belongs to a rapidly growing family of POZ-ZF transcription factors that include the Drosophila developmental regulators Tramtrak and Bric à brac, and the human oncoproteins BCL-6 and PLZF, which are causally linked to non-Hodgkins' lymphoma and acute promyelocytic leukemia, respectively. Monoclonal antibodies to Kaiso were generated and used to immunolocalize the protein and confirm the specificity of the p120-Kaiso interaction in mammalian cells. Kaiso specifically coprecipitated with a variety of p120-specific monoclonal antibodies but not with antibodies to alpha- or beta-catenin, E-cadherin, or APC. Like other POZ-ZF proteins, Kaiso localized to the nucleus and was associated with specific nuclear dots. Yeast two-hybrid interaction assays mapped the binding domains to Arm repeats 1 to 7 of p120 and the carboxy-terminal 200 amino acids of Kaiso. In addition, Kaiso homodimerized via its POZ domain but it did not heterodimerize with BCL-6, which heterodimerizes with PLZF. The involvement of POZ-ZF proteins in development and cancer makes Kaiso an interesting candidate for a downstream effector of cadherin and/or p120 signaling.
Project description:Levels of the mRNA NAC-1 are increased in the rat forebrain weeks after cocaine exposure. This long-term neuroadaptation occurs during the expression of behavioral sensitization, a model of psychostimulant-induced paranoia. NAC-1, the protein encoded by this cocaine-regulated mRNA, contains a Pox virus and zinc finger/bric-a-brac tramtrack broad complex (POZ/BTB) motif, which mediates interactions among several transcriptional regulators. The present studies demonstrate that NAC-1 acts as a transcription factor. NAC-1 was localized to the nucleus of neurons in the brain. Transfection of NAC-1 in cell culture repressed transcription of a reporter gene. NAC-1 was also able to affect the actions of other POZ/BTB proteins in mammalian two-hybrid studies; these interactions required the presence of the POZ/BTB domain. However, NAC-1 appears to be a unique POZ/BTB transcriptional regulator because it does not contain any zinc finger regions found in these other DNA-binding proteins. Adenoviral-mediated overexpression of NAC-1 protein in the rat nucleus accumbens prevented the development but not the expression of behavioral sensitization produced by repeated administration of cocaine. Thus, NAC-1 may modify the long-term behaviors of psychostimulant abuse by regulating gene transcription in the mammalian brain.
Project description:In Drosophila, broad complex, tramtrack, bric à brac (BTB)/poxvirus and zinc finger (POZ) transcription factors are essential regulators of development. We searched the Drosophila genome for BTB/POZ-ZF domains and discovered an unknown Drosophila gene, dPLZF, which encodes an orthologue of human PLZF. We then characterized the biological function of the dPLZF via genetic interaction analysis. Ectopic expression of dPLZF in the wing induced extra vein formation during wing development in Drosophila. Genetic interactions between dPLZF and Ras or extracellular signal-regulated kinase (ERK) significantly enhanced the formation of vein cells. On the other hand, loss-of-function mutations in dPLZF resulted in a dramatic suppression of the extra and ectopic vein formation induced by elevated Ras/ERK signaling. Moreover, dPLZF activity upregulated the expression of rhomboid (rho) and spitz, which perform crucial functions in vein cell formation in the developing wing. These results indicate that dPLZF is a transcription factor controlled by the Ras/ERK signaling pathway, which is a prominent regulator of vein cell formation during wing development in Drosophila.