Project description:Type I polyketide synthases (T1PKSs) are one of the most extensively studied PKSs, which can act either iteratively or via an assembly-line mechanism. Domains in the T1PKSs can readily be predicted by computational tools based on their highly conserved sequences. However, to distinguish between iterative and noniterative at the module level remains an overwhelming challenge, which may account for the seemingly biased distribution of T1PKSs in fungi and bacteria: small iterative monomodular T1PKSs that are responsible for the enormously diverse fungal natural products exist almost exclusively in fungi. Here we report the discovery of iterative T1PKSs that are unexpectedly both abundant and widespread in Streptomyces Seven of 11 systematically selected T1PKS monomodules from monomodular T1PKS biosynthetic gene clusters (BGCs) were experimentally confirmed to be iteratively acting, synthesizing diverse branched/nonbranched linear intermediates, and two of them produced bioactive allenic polyketides and citreodiols as end products, respectively. This study indicates the huge potential of iterative T1PKS BGCs from streptomycetes in the discovery of novel polyketides.
Project description:Modular polyketide synthases (type I PKSs) in bacteria are responsible for synthesizing a significant percentage of bioactive natural products. This group of synthases has a characteristic modular organization, and each module within a PKS carries out one cycle of polyketide chain elongation; thus each module is non-iterative in function. It was possible to predict the basic structure of a polyketide product from the module organization of the PKSs, since there generally existed a co-linearity between the number of modules and the number of chain elongations. However, more and more bacterial modular PKSs fail to conform to the canonical rules, and a particularly noteworthy group of non-canonical PKSs is the bacterial iterative type I PKSs. This review covers recent examples of iteratively used modular PKSs in bacteria. These non-canonical PKSs give rise to a large array of natural products with impressive structural diversity. The molecular mechanism behind the iterations is often unclear, presenting a new challenge to the rational engineering of these PKSs with the goal of generating new natural products. Structural elucidation of these synthase complexes and better understanding of potential PKS-PKS interactions as well as PKS-substrate recognition may provide new prospects and inspirations for the discovery and engineering of new bioactive polyketides.
Project description:Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.
Project description:Aspergillus species are industrially and agriculturally important as fermentors and as producers of various secondary metabolites. Among them, fungal polyketides such as lovastatin and melanin are considered a gold mine for bioactive compounds. We used a phylogenomic approach to investigate the distribution of iterative polyketide synthases (PKS) in eight sequenced Aspergilli and classified over 250 fungal genes. Their genealogy by the conserved ketosynthase (KS) domain revealed three large groups of nonreducing PKS, one group inside bacterial PKS, and more than 9 small groups of reducing PKS. Polyphyly of nonribosomal peptide synthase (NRPS)-PKS genes raised questions regarding the recruitment of the elegant conjugation machinery. High rates of gene duplication and divergence were frequent. All data are accessible through our web database at http://metabolomics.jp/wiki/Category:PK.
Project description:One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network's specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks.
Project description:Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.