Unknown

Dataset Information

0

Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5'-triphosphate in Cellular Applications.


ABSTRACT: Changes in adenosine triphosphate (ATP) and peroxynitrite (ONOO-) concentrations have been correlated in a number of diseases including ischemia-reperfusion injury and drug-induced liver injury. Herein, we report the development of a fluorescent probe ATP-LW, which enables the simultaneous detection of ONOO- and ATP. ONOO- selectively oxidizes the boronate pinacol ester of ATP-LW to afford the fluorescent 4-hydroxy-1,8-naphthalimide product NA-OH (λex = 450 nm, λem = 562 nm or λex = 488 nm, λem = 568 nm). In contrast, the binding of ATP to ATP-LW induces the spirolactam ring opening of rhodamine to afford a highly emissive product (λex = 520 nm, λem = 587 nm). Due to the differences in emission between the ONOO- and ATP products, ATP-LW allows ONOO- levels to be monitored in the green channel (λex = 488 nm, λem = 500-575 nm) and ATP concentrations in the red channel (λex = 514 nm, λem = 575-650 nm). The use of ATP-LW as a combined ONOO- and ATP probe was demonstrated using hepatocytes (HL-7702 cells) in cellular imaging experiments. Treatment of HL-7702 cells with oligomycin A (an inhibitor of ATP synthase) resulted in a reduction of signal intensity in the red channel and an increase in that of the green channel as expected for a reduction in ATP concentrations. Similar fluorescence changes were seen in the presence of SIN-1 (an exogenous ONOO- donor).

SUBMITTER: Wu L 

PROVIDER: S-EPMC8759067 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4074921 | biostudies-literature
| S-EPMC6385674 | biostudies-other
| S-EPMC6900745 | biostudies-literature
| S-EPMC8528035 | biostudies-literature
| S-EPMC6062889 | biostudies-other
| S-EPMC6685465 | biostudies-literature
| S-EPMC6069456 | biostudies-literature
| S-EPMC2820722 | biostudies-other
| S-EPMC8179478 | biostudies-literature